Elements of the methodology of routine mathematical activity in teaching undergraduate and graduate students
Melnikov Yury Borisovich, Knysh Alla Aleksandrovna
Ural State Mining University; Ural Federal University
Ural State University of Economics; Ural Federal University
Submitted: 01.07.2024
Abstract. Digitalization of all areas of life in education is manifested mainly in the introduction of distance technologies, electronic learning tools and electronic tools for monitoring and management. In our opinion, this is not enough, it is necessary to change priorities in the content and activity components of training. In particular, in teaching mathematical activity, one cannot limit oneself to management at the algorithm level. Based on theoretical research and the analysis of teaching practice, the authors identified three levels of activity management: the level of typical algorithms, typical strategies of subject activity, and the level of methodology. The aim of the study is to build a model of the methodology of routine mathematical activity adapted for use in the digital environment and applicable in the practice of teaching mathematics to undergraduate and graduate students. In the article, the methodology of activity is considered from an applied point of view, based on many years of practice of teaching mathematics to students and the author’s interpretation of the concept of “activity strategy”, thought of as a mechanism for creating activity plans (the mechanism is understood here as an objective component of the activity management system). The scientific novelty of the study consists in the fact that, firstly, a model of the methodology of routine mathematical activity has been built and tested in practice (during the development of educational and methodological support, conducting classes, organizing independent work), and secondly, priority components of the methodology of routine mathematical activity have been identified based on the analysis of this model and teaching practice. As a result of the study, the authors proposed a model of the methodology of routine mathematical activity in the form of a system of three components: 1) building sufficiently adequate models for implementing already mastered strategies; 2) a system of “internal meta-strategies”, i.e., strategies for forming typical components of strategies; 3) a system of “external meta-strategies”, i.e., strategies for combining known strategies. On this basis, priority components of the methodology of routine mathematical activity have been identified. Examples of using the methodology for building strategies for solving mathematical problems are given.
Key words and phrases: алгоритм деятельности, стратегия деятельности, методология рутинной математической деятельности, план деятельности, цель деятельности, activity algorithm, activity strategy, methodology of routine mathematical activity, activity plan, activity goal
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Bogdanov A. A. Tektologiya (vseobshchaya organizatsionnaya nauka): v 2 kn. M.: Ekonomika. 1989a. Kn. 1.
Bogdanov A. A. Tektologiya (vseobshchaya organizatsionnaya nauka): v 2 kn. M.: Ekonomika. 1989b. Kn. 2.
Varankina V. I. Uchebnaya distsiplina «Istoriya i metodologiya matematiki» dlya magistrantov-matematikov // Sovremennye problemy nauki i obrazovaniya. 2015. № 5.
Gil'mullin M. F. Voprosy metodologii metodiki obucheniya istorii matematiki // Matematicheskii vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona. 2011. № 13.
Dichenko I. G. Zadachi s poiskom strategii na urokakh matematiki // Zadachi v obuchenii matematike: teoriya, opyt, innovatsii: materialy vserossiiskoi nauchno-prakticheskoi konferentsii, posvyashchennoi 115-letiyu chlena-korrespondenta APN SSSR P. A. Laricheva (g. Vologda, 16-17 fevralya 2007 g.). Vologda: Rus', 2007.
Erovenko V. A. Metodologicheskaya napravlennost' evristicheskikh strategii v kognitivnom osmyslenii matematicheskogo analiza // Rossiiskii gumanitarnyi zhurnal. 2021. T. 10. № 1. https://doi.org/10.15643/libartrus-2021.1.2
Istoriya i metodologiya matematiki: uchebnoe posobie / sost. I. V. Goncharova. Donetsk: Donetskii gosudarstvennyi universitet, 2017.
Karapetyan A. G., Margaryan A. G. Metodologiya matematiki kak uchenie o logicheskikh aspektakh matematicheskogo znaniya // Nauchnye vesti. 2022. № 3-1 (44).
Klepikov V. N., Besprozvannaya T. V. Formirovanie metapredmetnykh rezul'tatov sredstvami proektno-issledovatel'skoi deyatel'nosti, ili Zachem sovremennoi shkole psikholog-metodolog // Vestnik prakticheskoi psikhologii obrazovaniya. 2015. № 2 (43).
Kogalovskii S. R. Ponyatie modeli i matematika // Shkol'nye tekhnologii. 2013. № 4.
Maklakov A. G. Obshchaya psikhologiya: uchebnoe posobie. SPb.: Piter, 2016.
Mel'nikov Yu. B. Vneshnee algebraicheskoe predstavlenie strategii deyatel'nosti // e-FORUM. 2021. T. 5. № 2 (15).
Mel'nikov Yu. B., Onokhina E. A., Shitikov S. A. Uluchshenie adekvatnosti ekonomicheskikh modelei // Izvestiya Ural'skogo gosudarstvennogo ekonomicheskogo universiteta. 2018. T. 19. № 1.
Mel'nikov Yu. B., Privalov S. M. Vnutrennee algebraicheskoe predstavlenie strategii kak sredstvo organizatsii obucheniya matematicheskoi deyatel'nosti // Sovremennoe obrazovanie. 2019. № 4. https://doi.org/10.25136/2409-8736.2019.4.31402
Mel'nikov Yu. B., Solov'yanov V. B., Shirpuzhev S. V. Strategiya perevoda s odnogo matematicheskogo yazyka na drugoi // Izvestiya Rossiiskogo gosudarstvennogo pedagogicheskogo universiteta imeni A. I. Gertsena. 2017. № 184.
Mishchik S. A. Pedagogometrika i matematicheskoe modelirovanie uchebnoi deyatel'nosti // Theoretical & Applied Science. 2014. № 6 (14).
Orlov A. I. O vliyanii metodologii na posledstviya prinyatiya reshenii // Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2017. № 125. https://doi.org/10.21515/1990-4665-125-023
Orlov A. I. O metodologii statisticheskikh metodov // Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2014. № 104.
Ostapenko A. A., Yanushkyavichene O. L. K voprosu o metodologii obucheniya matematike // Informatsiya i obrazovanie: granitsy kommunikatsii. 2011. № 3 (11).
Perikova E. I., Lovyagina A. E., Byzova V. M. Effektivnost' metakognitivnykh strategii prinyatiya reshenii v uchebnoi deyatel'nosti // Science for Education Today. 2019. T. 9. № 4.
Rozin V. M. Matematika: vosstanovlenie opredelennosti (zakhod ot metodologii i kul'turologii) // Kul'tura i iskusstvo. 2019. № 5. https://doi.org/10.7256/2454-0625.2019.5.29522
Rusanov V. V., Roslyakov G. S. Istoriya i metodologiya prikladnoi matematiki: ucheb. posobie. M.: Moskovskii gosudarstvennyi universitet im. M. V. Lomonosova, 2004.
Semenov E. E. Triada dialogov kak aspekt metodologii dialogicheskogo poznaniya matematiki // Pedagogicheskie innovatsii: traditsii, opyt, perspektivy: materialy IV mezhdunarodnoi nauchno-prakticheskoi konferentsii (g. Vitebsk, 5 dekabrya 2013 g.). Vitebsk: Vitebskii gosudarstvennyi universitet im. P. M. Masherova, 2013.
Simanov A. L. Postneklassicheskaya nauka: novaya matematika i novaya metodologiya // Gumanitarnye nauki v Sibiri. 1995. № 2.
Smirnov E. I., Tikhomirov S. A. «Problemnye zony» i paradigma slozhnosti v matematicheskom obrazovanii // Nastavnichestvo v matematike i v matematicheskom obrazovanii: sbornik trudov mezhdunarodnoi nauchno-prakticheskoi konferentsii «17-e kolmogorovskie chteniya», posvyashchennoi 120-letiyu so dnya rozhdeniya akademika A. N. Kolmogorova (g. Kirov, 14-15 sentyabrya 2023 g.). Kirov: Vyatskii gosudarstvennyi universitet, 2023.
Smirnov E. I., Uvarov A. D., Tikhomirov S. A. Proyavlenie sinergii issledovaniya mnogoetapnykh matematiko-informatsionnykh zadanii na osnove metoda parametrizatsii // Continuum. Matematika. Informatika. Obrazovanie. 2024. № 1 (33).
Sukhotin A. M., Tarbokova T. V. Vysshaya matematika. Al'ternativnaya metodologiya prepodavaniya: uchebnoe posobie. M.: Yurait, 2020.
Testov V. A. Krasota v matematicheskom obrazovanii: sinergeticheskoe mirovidenie // Obrazovanie i nauka. 2019. T. 21. № 2. https://doi.org/10.17853/1994-5639-2019-2-9-26
Testov V. A. Strategiya obucheniya v sovremennykh usloviyakh // Pedagogika. 2005. № 7.
Fedorov B. I. B. Bol'tsano kak logik i metodolog nauki // Logiko-filosofskie shtudii. 2011. № 9.
Shabanova M. V. Metodologiya uchebnogo poznaniya kak tsel' izucheniya matematiki: monografiya. Arkhangel'sk: Pomorskii gosudarstvennyi universitet im. M. V. Lomonosova, 2004.
Shadrikov V. D. Vozvrashchenie dushi: teoreticheskie osnovaniya i metodologiya psikhologicheskoi nauki. M.: Institut psikhologii RAN, 2021. https://doi.org/10.38098/mng_21_0436
Shilo N. G. Osnovnye napravleniya metodologii matematiki // Matematika i matematicheskoe obrazovanie: sbornik trudov IKh mezhdunarodnoi nauchnoi konferentsii «Matematika. Obrazovanie. Kul'tura» (g. Tol'yatti, 24-26 aprelya 2019 g.). Tol'yatti: Tol'yattinskii gosudarstvennyi universitet, 2019.
Esedova G. S., Gadzhimakhadova L. M. Matematicheskoe modelirovanie urovnya motivatsii uchebnoi deyatel'nosti studentov // Mukhtarovskie chteniya: aktual'nye problemy matematiki, metodiki ee prepodavaniya i smezhnye voprosy: sbornik trudov mezhdunarodnoi nauchnoi konferentsii, posvyashchennoi 50-letiyu DGTU (g. Makhachkala, 22-23 aprelya 2022 g.). Makhachkala: FORMAT, 2022.
Bertalanffy L. von. General System Theory: Foundations, Development, Applications. 1st ed. N. Y.: George Braziller, lnc., 1968.
Burgueno R., Sicilia A., Alcaraz-Ibanez M., Lirola M. J., Medina-Casaubón J. Effects of Teaching Goal Content and Academic Behavioural Regulation on the Beliefs of Teaching Efficacy in Pre-service Teachers // Educacion XXI. 2020. Vol. 23. No. 1.
Cocieru O. C., Katz M., McDonald M. A. Understanding Interactions in a Classroom-As-Organization Using Dynamic Network Analysis // Journal of Experiential Education. 2019. Vol. 43. No. 2. https://doi.org/10.1177/1053825919888778
Melnikov Yu. B. Modeling Theory Based on the Formal-Constructive Interpretation of the Model // Data Science and Intelligent Systems.CoMeSySo 2021 / ed. by R. Silhavy, P. Silhavy, Z. Prokopova. Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-90321-3_51