Transdisciplinary Engineering Training of Master’s Students in Bioengineering at a Federal University
Guzanov Boris Nikolaevich, Baranova Anna Alexandrovna, Bazhukova Irina Nikolaevna
Russian State Professional-Pedagogical University
Ural Federal University named after the First President of Russia B. N. Yeltsin
Submitted: 03.03.2022
Abstract. The purpose of the study is to design a training programme for master’s students of the engineering specialisation pursuing a degree in bioengineering, based on the principles of transprofessionalism and social partnership. The paper presents the content, methodological foundations and educational technologies that make it possible to form specialisation competencies in the field of nuclear medicine in future graduates in a specially organised practice-oriented educational environment of a university by integrating production into the educational process. Scientific novelty lies in developing a concept and constructing a model for an educational programme specialisation in the subject area of nuclear medicine within the master’s programme in "Biotechnical Systems and Technologies". As a result, it has been shown that the developed educational programme specialisation "Nuclear Medicine Technology" as a system is determined by means of mastering several training modules interconnected on the basis of a transdisciplinary approach, which contributes to the development of students’ innovation skills. The successful trial of the programme, which has been taking place in the real educational process for five years since 2017, has led to the creation of a scientific and educational cluster in the structure of a federal university, where a key role in training is assigned to students’ interdisciplinary projects that are carried out at the graduate department together with the Cyclotron Center for Nuclear Medicine of the Ural Federal University.
Key words and phrases: трансдисциплинарная инженерная подготовка, биоинженерия, принцип транспрофессионализма, профильно-специализированная компетенция, практико-ориентированная образовательная среда, transdisciplinary engineering training, bioengineering, principle of transprofessionalism, specialisation competence, practice-oriented educational environment
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Vcherashnii P. M., Gafurova N. V., Rumyantsev M. V., Osipenko O. A. Inzhenernoe obrazovanie: smena formata // Vysshee obrazovanie v Rossii. 2016. № 8-9 (204).
Guzanov B. N., Tarasyuk O. V., Bashkova S. A. Razvitie profil'no-spetsializirovannykh kompetentsii v protsesse otraslevoi podgotovki studentov professional'no-pedagogicheskogo vuza // European Social Science Journal. 2016. № 2.
Zeer E. F., Symanyuk E. E., Berdnikova D. V., Borisov G. I. Formirovanie transprofessional'nykh kompetentsii u budushchikh inzhenerov // Aktual'nye problemy psikhologicheskogo znaniya. 2019. № 2.
Karasik L. V. Problemy i perspektivy razvitiya innovatsii v rossiiskoi sisteme vysshego obrazovaniya // Vestnik Povolzhskogo instituta upravleniya. 2018. T. 18. № 6. DOI: 10.22394/1682-2358-2018-6-72-77
Karlik A. E., Shirokov S. N., Platonov V. V., Yakovleva E. A. Opyt sotrudnichestva vuzov s promyshlennymi predpriyatiyami Sankt-Peterburga // Planirovanie i obespechenie podgotovki kadrov dlya promyshlenno-ekonomicheskogo kompleksa regiona. 2016. T. 1.
Solov'ev M. A., Zamyatina O. M. Sistema elitnogo tekhnicheskogo obrazovaniya TPU // Tomskii politekhnik. 2013. № 18.
Sholina I. I., Bannikova L. N., Boronina L. N., Reprintseva N. E. Otsenka sistemy podgotovki inzhenerno-tekhnicheskikh kadrov: materialy kompleksnogo issledovaniya potrebnostei krupneishikh regional'nykh rabotodatelei. Ekaterinburg: Azhur, 2016.
Blind K. The Impact of Regulation on Innovation // Nesta Working Papers. 2012. № 12 (2).
Celik S., Kirjavainen S., Bj?rklund T. A. Educating Future Engineers: Student Perceptions of the Societal Linkages of Innovation Opportunities. URL: https://peer.asee.org/34490. DOI: 10.18260/1-2-34490
Christie M., De Graaff E. The Philosophical and Pedagogical Underpinnings of Active Learning in Engineering Education // European Journal of Engineering Education. 2017. Vol. 42. Iss. 1. DOI: 10.1080/03043797.2016.1254160
Gilmartin S. K., Shartrand A., Chen H. L., Estrada C., Sheppard S. Investigating Entrepreneurship Program Models in Undergraduate Engineering Education // International Journal of Engineering Education. 2016. Vol. 32 (5).
Lehmann M. Problem-Oriented and Project-Based Learning (POPBL) as an Innovative Learning Strategy for Sustainable Development in Engineering Education // European Journal of Engineering Education. 2008. Vol. 33. Iss. 3. DOI: 10.1080/03043790802088566
Leydens J. A., Lucena J. C. Engineering Justice: Transforming Engineering Education and Practice. Hoboken: John Wiley & Sons, 2017.
Lima R. M., Andersson P. H., Saalman E. Active Learning in Engineering Education: A (Re)introduction // European Journal of Engineering Education. 2017. Vol. 42. DOI: 10.1080/03043797.2016.1254161
Riley D., Slaton A. E., Pawley A. L. Social Justice and Inclusion - Women and Minorities in Engineering // Cambridge Handbook of Engineering Education Research / ed. by A. Johri, B. M. Olds. Cambridge: Cambridge University Press, 2015.
Rodr?guez J. Project Based Learning Experiences in the Space Engineering Education at Technical University of Madrid // Advances in Space Research. 2015. Vol. 56. Iss. 7. DOI: 10.1016/j.asr.2015.07.003
Savery J. R. Overview of Problem-Based Learning: Definitions and Distinctions // Essential Readings in Problem-Based Learning: Exploring and Extending the Legacy of Howard S. Barrows. 2015. Vol. 9. Iss. 2. DOI: 10.7771/1541-5015.1002
Stewart L. A. The Impact of Regulation on Innovation in the United States: A Cross-Industry Literature Review. Washington, 2011.
Th?rer M., Toma?evi? I. A Systematic Review of the Literature on Integrating Sustainability into Engineering Curricula // Journal of Cleaner Production. 2018. Vol. 181. DOI: 10.1016/j.jclepro.2017.12.130