Musakulova Zhyldyz Abdymanapovna
International University of the Kyrgyz Republic in Bishkek
Abstract. A neuronet module is suggested for analyzing recording of the electroencephalogram using a multilayer neural network with nonlinear synaptic outputs. An algorithm for aggregating data of the electroencephalogram using Kohonen neural networks is considered. The proposed module allows processing data of the electroencephalogram record and classifying them at the "open/close eyes" test.
Key words and phrases: нейронные сети, электроэнцефалограмма, алгоритм агрегирования, альфа-ритм, нейросетевой модуль, neural networks, electroencephalogram, algorithm of aggregation, alpha-rhythm, neuronet module
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Bodyanskii E. V. Iskusstvennye neironnye seti: arkhitektura, obuchenie, primenenie. Khar'kov: TELETEKh, 2004. 372 s.
Zhirmunskaya E. A., Losev V. S. Sistemy opisaniya i klassifikatsiya elektroentsefalogramm cheloveka. M.: Nauka, 1984. 78 s.
Zenkov L. R. Klinicheskaya elektroentsefalografiya (s elementami epileptologii): rukovodstvo dlya vrachei. 5-e izd. M.: MEDpressinform, 2012. 356 s.
Mirkin E. L., Musakulova Zh. A. Iskusstvennye neironnye seti v zadache klassifikatsii EEG (elektroentsefalogramm golovnogo mozga). Saarbr?cken: LAMBERT Academic Publishing, 2015. 104 s.
Mirkin E. L., Musakulova Zh. A., Shmoor Ya. A. Ispol'zovanie neirosetevykh tekhnologii v zadache klassifikatsii elektroentsefalogramm cheloveka // Problemy avtomatiki i upravleniya. Bishkek, 2013. № 1. S. 74-83.
Musakulova Zh. A. Obuchenie mnogosloinoi neironnoi seti s nelineinym sigmoidal'nym vkhodom // Novyi universitet. Seriya "Tekhnicheskie nauki". 2012. № 3 (9). S. 38-44.