ABOUT THE EQUATION OF MOTION OF FREE VORTEX SURFACE IN IDEAL INCOMPRESSIBLE FLUID
Fedotov Anatolii Aleksandrovich
Bauman Moscow State Technical University
Abstract. The article examines a nonlinear problem about the unsteady flow of the infinitely thin wing by ideal incompressible fluid. The flow takes place with the formation of the surface of the tangential discontinuity of fluid speed descending to the stream from the edge of the wing motion. The wing and the surface of tangential discontinuity are represented, respectively, as a lifting surface and free vortex sheath. It is shown that the velocity definition of free vortex sheath accepted in the theory of lifting surface is a sufficient condition for the closure of equations system describing the unsteady flow by ideal incompressible fluid of the infinitely thin wing of final amplitude.
Key words and phrases: крыло, поверхность тангенциального разрыва, несущая поверхность, свободная вихревая поверхность, поверхностный вектор вихря, wing, surface of tangential discontinuity, lifting surface, free vortex sheath, surface vortex vector
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Belotserkovskii S. M., Nisht M. I. Otryvnoe i bezotryvnoe obtekanie tonkikh kryl'ev ideal'noi zhidkost'yu. M.: Nauka, 1978. 351 s.
Zaitsev A. A. Teoriya nesushchei poverkhnosti: matematicheskaya model', chislennyi metod, raschet mashushchego poleta. M.: Nauka, 1995. 160 s.
Krylov D. A., Sidnyaev N. I., Fedotov A. A. Obtekanie koleblyushchegosya kryla potokom ideal'noi neszhimaemoi zhidkosti // Trudy MGTU im. N. E. Baumana. M.: Izd-vo MGTU im. N. E. Baumana, 2013. № 608. S. 74-92.
Loitsyanskii L. G. Mekhanika zhidkosti i gaza. M.: Drofa, 2003. 840 s.
Sedov L. I. Mekhanika sploshnoi sredy. M.: Nauka, 1976. T. 1. 536 s.; T. 2. 576 s.
Fedotov A. A. Issledovanie vikhrevoi struktury za koleblyushchimsya krylom // Sovremennye metody teorii kraevykh zadach: materialy Voronezhskoi vesennei matematicheskoi shkoly "Pontryaginskie chteniya - XIX". Voronezh: VGU, 2008. S. 213-214.
Fedotov A. A. Raschet vikhrevoi struktury za krylom, rabotayushchim v rezhime sozdaniya sily tyagi // Al'manakh sovremennoi nauki i obrazovaniya. 2008. № 7 (14). S. 225-229.
Fedotov A. A. Struktura vikhrevogo sleda za krylom, rabotayushchim v rezhime normal'nogo trepeshchushchego poleta // Vestnik MGU. Seriya 1. Matematika. Mekhanika. 1990. № 3. S. 42-46.