GENERAL THEORY OF PROBLEMS SOLUTION IN RELATION TO DESCRIPTIVE GEOMETRY
Vlasov Vladimir Vasil'evich, Khryashchev Valentin Gennad'evich, Goryachkina Aleksandra Yur'evna
Financial University under the Government of the Russian Federation
Bauman Moscow State Technical University
Submitted: 06.04.2018
Abstract. One of the drawbacks of the domestic educational system is the inadequate ability of the graduates of educational institutions to apply the obtained knowledge in the solution of practical problems. The general theory of problems solution can help them in overcoming it, and at the same time it is the basis of a new science - the science of ratiology. This theory is concerned with the precise formulation of problems and the schematic methods of their solution invariantly to subject domains. Due to it, the apparatus of this theory (R-methodology of problems solution) can be applied in any of them. An example of using R-methodology for the solution of rather specific problems of descriptive geometry is considered in the article. The good scientific basis, modern nature and subject invariance of R-methodology allow using it as a unified tool for teaching to solve a wide variety of problems in educational institutions of different levels and directions. At the same time, a number of interesting possibilities of the modernization of the entire educational process appear: the formation and wide use of local and integral databases, an emphasis on students’ independent work with them, decrease in the part of insufficiently effective forms of teaching and so on.
Key words and phrases: общая теория решения задач, рациология, Р-методология, унифицированная база данных, начертательная геометрия, прямоугольное (ортогональное) проецирование, проекция, general theory of problems solution, ratiology, R-methodology, unified database, descriptive geometry, right-angled (orthogonal) projecting, projection
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Vlasov V. V. Obrazovanie XXI veka v svete obshchikh zakonomernostei razvitiya sotsial'nykh sistem // Uchenye zapiski RGSU. 2008. № 5. S. 73-77.
Vlasov V. V. Ratsiologiya - novaya nauka informatsionnogo obshchestva. Berlin, 2012. 80 s.
Vlasov V. V. Reshenie zadach i sistema obrazovaniya v informatsionnom obshchestve // Uchenye zapiski Instituta informatizatsii obrazovaniya RAO. 2008. № 28. S. 20-25.
Gordon V. O., Sementsov-Ogievskii M. A. Kurs nachertatel'noi geometrii. M.: Nauka, 1988. 272 s.
Zhirnykh B. G., Seregin V. I., Sharikyan Yu. E. Nachertatel'naya geometriya: uchebnik / pod obshch. red. V. I. Seregina. M.: Izdatel'stvo MGTU im. N. E. Baumana, 2017. 166 s.
Kupavtsev A. V. Kontseptsiya obrazovatel'noi paradigmy // Alma mater (Vestnik vysshei shkoly). 2017. № 6. S. 10-15.