GRAMOTA Publishers suggests publishing your scientific articles in periodicals
Pan-ArtPedagogy. Theory & PracticePhilology. Theory & PracticeManuscript

Archive of Scientific Articles

SOURCE:    Historical, Philosophical, Political and Law Sciences, Culturology and Study of Art.
Issues of Theory and Practice
. Tambov: Gramota, 2012. № 12. Part 1. P. 99-104.
SCIENTIFIC AREA:    Philosophical Sciences
Procedure of Scientific Articles Publication | To Show Issue Content | To Show All Articles in Section | Subject Index

License Agreement on scientific materials use.

SUBJECT AND EVENT

Egorychev Il'ya Eduardovich
St. Petersburg State University


Abstract. Ontology is mathematics - that is central, but by far not obvious thesis of Alain Badiou's fundamental work Being and Event. Moreover, there is no place left for event in ontology understood in such a way. Are there enough foundations for such a radical philosophical statement? The author undertakes an attempt to analyze the foundations that allow Badiou identifying ontology with mathematics, describes the limits of such ontology, and also comprehends and supplements the theory of subject developed on the limits of ontology.
Key words and phrases: онтология, субъект, событие, истина, верность, оператор верности, ontology, subject, event, truth, loyalty, operator of loyalty
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
  1. Aksiomatika teorii mnozhestv [Elektronnyi resurs]. URL: http://ru.wikipedia.org/wiki/Teoriya_Tsermelo_-_Frenkelya (data obrashcheniya: 09.10.2010).
  2. Bad'yu A. Apostol Pavel. Obosnovanie universalizma. M.: Universitetskaya kniga, 1999. 93 s.
  3. Bad'yu A. Manifest filosofii. SPb.: Machina, 2003. 184 s.
  4. Kantor G. K obosnovaniyu ucheniya o transfinitnykh mnozhestvakh // Kantor G. Trudy po teorii mnozhestv. M.: Nauka, 1985. 429 s.
  5. Badiou A. Being and Event. N. Y.: Continuum, 2007. 526 r.
  6. Badiou A. Logics of Worlds (Being and Event - 2). N. Y.: Continuum, 2009. 617 r.
  7. Kunen K. Set Theory: an Introduction to Independence Proofs. Elsevier, 2006. 313 r.

Procedure of Scientific Articles Publication | To Show Issue Content | To Show All Articles in Section | Subject Index

© 2006-2024 GRAMOTA Publishers

site development and search engine optimization (seo): krav.ru