Negation of German polar words and expressions in automated analysis of text tonality
Glushak Vasiliy Mikhaylovich
Moscow State Institute of International Relations (University)
Submitted: 10.08.2023
Abstract. The aim of the study is to describe various groups of negative words in the German language and the features of their functioning in text tonality analysis in the framework of automated natural language processing (NLP). Scientific analysis focuses on the ability of negative words to modify polar words and expressions, i.e., to change their connotation within an utterance. The study is novel in that it is the first to present in a systematic manner the syntactic-morphological relationship between certain groups of linguistic units of negation and polar words, which must be taken into account in NLP when carrying out sentiment analysis of German texts based on lexico-grammatical rules. As a result, all German language means of negation were divided into groups depending on the extent of their impact on the polar words in the sentence: tonality modification for only the adjoining polar element or the ability to interact with the parts of an utterance that are located at a distance of several tokens. For automatic tonality analysis of German texts, it is necessary to mark the morphological and syntactic features reflecting the peculiarities of both the selected groups of negation words and polar words and expressions at the stage of feature extraction.
Key words and phrases: средства отрицания, полярные слова, тональность текста, сентимент-анализ, обработка естественного языка, negators, polar words, text tonality, sentiment analysis, natural language processing
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Barkovich A. A. Sentiment-analiz: lingvisticheskii potentsial reglamentatsii predobrabotki // Virtual'naya kommunikatsiya i sotsial'nye seti. 2023. T. 2. № 3 (7).
Gimaletdinova G. K., Dovtaeva E. Kh. Sentiment-analiz chitatel'skogo internet-kommentariya k politicheskomu tekstu // Politicheskaya lingvistika. 2020. № 1 (79).
Zvereva P. P. Sentiment-analiz teksta (na materiale pechatnykh tekstov gazety “The New York Times” o Rossii i rossiyanakh) // Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya «Lingvistika». 2014. № 5.
Kolmogorova A. V. Ispol'zovanie tekstov zhanra «internet-otkrovenie» v kontekste resheniya zadach sentiment-analiza // Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya «Lingvistika i mezhkul'turnaya kommunikatsiya». 2019. № 3.
Kornei A. O. Metody i algoritmy aspektnogo analiza tonal'nosti na osnove gibridnoi cemantiko-statisticheskoi modeli estestvennogo yazyka: diss. … k. tekhn. n. Novosibirsk, 2021.
Lukashevich N. V. Avtomaticheskii analiz tonal'nosti tekstov: problemy i metody // Intellektual'nye sistemy. Teoriya i prilozheniya. 2022. T. 26. № 1.
Lyalikova V. G., Bezryadin M. M. Analiz tonal'nosti teksta metodami mashinnogo obucheniya // Aktual'nye problemy prikladnoi matematiki, informatiki i mekhaniki: sb. tr. mezhdunar. nauch. konf. (g. Voronezh, 12-14 dekabrya 2022 g.). Voronezh, 2023.
Maiorova E. V. O sentiment-analize i perspektivakh ego primeneniya // Sotsial'nye i gumanitarnye nauki. Otechestvennaya i zarubezhnaya literatura. Seriya 6 «Yazykoznanie». 2020. № 4.
Paramonov I. V., Poletaev A. Yu., Petryakov V. L. O perspektivakh analiza tonal'nosti russkoyazychnykh tekstov na osnove sintaksicheskoi struktury predlozhenii // Zametki po informatike i matematike: sb. nauch. st. Yaroslavl', 2021. Vyp. 13.
Petrenko K. V. Vzaimodeistvie emotsional'no-otsenochnoi tonal'nosti s tematikoi novostnykh tekstov: tonal'nyi slovar' kak sredstvo klassifikatsii tekstov // Aktual'nye problemy lingvistiki i literaturovedeniya: sb. mat. IX (XXIII) mezhdunar. nauch.-prakt. konf. molodykh uchenykh (g. Tomsk, 14-16 aprelya 2022 g.). Tomsk, 2022.
Poletaev A. Yu., Paramonov I. V. Rekursivnyi algoritm opredeleniya tonal'nosti predlozhenii na russkom yazyke // Modelirovanie i analiz informatsionnykh sistem. 2022. T. 29. № 2.
Polyaeva E. V., Efremova N. E. Zadacha avtomaticheskogo raspoznavaniya sarkazma i ironii: sbor i analiz naborov dannykh dlya russkogo yazyka // Vyzovy i trendy mirovoi lingvistiki: tr. i mat. Kazanskogo mezhdunarodnogo lingvisticheskogo sammita: v 2-kh t. Kazan', 2021. T. 1.
Tutubalina E. V., Ivanov V. V., Zagulova M., Mingazov N., Alimova I., Malykh V. Testirovanie metodov analiza tonal'nosti teksta, osnovannykh na slovaryakh // Elektronnye biblioteki. 2015. T. 18. № 3-4.
Chernyshevich M. V. Klassifikatsiya tonal'nosti mnenii dlya zadachi avtomaticheskogo sentiment-analiza teksta // Uchenye zapiski UO «VGU im. P. M. Masherova». 2018. T. 28.
Cotik V., Roller R., Xu F., Uszkoreit H., Budde K., Schmidt D. Negation detection in clinical reports written in German // Proceedings of the COLING-Workshop on Building and Evaluating Resources for Biomedical Text Mining (COLING-BioTxtM). Osaka, 2016.
Haas M., Versley Y. Subsentential sentiment on a shoestring: A crosslingual analysis of compositional classification // Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL (HLT/NAACL). Denver, 2015.
Harabagiu S., Hickl A., Lacatusu F. Negation, contrast and contradiction in text processing // Proceedings of the National Conference on Artificial Intelligence (AAAI). Boston, 2006.
Kiritchenko S., Mohammad S. The effect of negators, modals, and degree adverbs on sentiment composition // Proceedings of the Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA). San Diego, 2016.
Klenner M., Fahrni A., Petrakis S. PolArt: A robust tool for sentiment analysis // Proceedings of the Nordic Conference on Computational Linguistics (NoDaLiDa). Odense, 2009.
Morante R. Descriptive analysis of negation cues in biomedical texts // Proceedings of the Conference on Language Resources and Evaluation (LREC). Valletta, 2010.
Polanyi L., Zaenen A. Contextual valence shifters // Computing Attitude and Affect in Text: Theory and Applications / ed. by J. G. Shanahan, Y. Qu, J. Wiebe. Heidelberg: Springer, 2006.
Sanchez-Graillet O., Poesio M. Negation of protein-protein interactions: Analysis and extraction // Bioinformatics. 2007. Vol. 23 (13).
Siegel M., Alexa M. Automatische Analyse deutschsprachiger Meinungsäußerungen. Wiesbaden: Springer, 2020.
Socher R., Perelygin A., Wu J., Chuang J., Manning C., Ng A., Potts C. Recursive deep models for semantic compositionality over a sentiment treebank // Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Seattle, 2013.
Wiegand M., Balahur A., Roth B., Klakow D., Montoyo A. A survey on the role of negation in sentiment analysis // Proceedings of the Workshop on Negation and Speculation in Natural Language Processing. Uppsala, 2010.
Wiegand M., Wolf M., Ruppenhofer J. Negation modeling for German polarity classification // Language Technologies for the Challenges of the Digital Age, Lecture Notes in Computer Science / ed. by G. Rehm. Cham: Springer International Publishing, 2018.