Specificity of Using Professional Terminology in Scientific Articles and Reviews (by the Material of the English-Language Texts of the Subject Area "Shipbuilding")
Dubinina Ekaterina Yurievna
Saint Petersburg State University of Aerospace Instrumentation
Submitted: 23.03.2021
Abstract. The article examines a text compression algorithm. The research objective involves clarifying principles of the text compression process. To achieve this research objective, the author conducts an experiment during which a corpus of the English-language articles and reviews of the subject area "Shipbuilding" has been developed. Scientific originality of the study lies in the fact that the researcher for the first time discovers principles of professional vocabulary usage in scientific articles and scientific reviews. A statistical analysis allows concluding that in scientific reviews, the text compression algorithm is based on using complicated multicomponent terms. In scientific articles, two- or three-component terms prevail.
Key words and phrases: автоматическое реферирование, интеллектуальный реферат, ключевые термины, научная статья, сжатие текста, automatic abstracting, scientific review, key terms, scientific article, text compression
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Baranov A. N. Vvedenie v prikladnuyu lingvistiku. M.: Editorial URSS, 2009. 360 s.
Batura T. V., Bakieva A. M. Metody i sistemy avtomaticheskogo referirovaniya tekstov. Novosibirsk: IPTs NGU, 2019. 110 s.
Blyumenau D. I. Informatsionnyi analiz/sintez dlya formirovaniya vtorichnogo potoka dokumentov. SPb.: Professiya, 2002. 240 s.
Blyumenau D. I., Gendina N. I., Dobronravov I. S., Lakhuti D. G., Leonov V. P., Fedorov E. B. Formalizovannoe referirovanie s ispol'zovaniem slovesnykh klishe (markerov) // Nauchno-tekhnicheskaya informatsiya. Seriya 2. Informatsionnye protsessy i sistemy. 1981. № 2. S. 16-20.
Gor'kova V. I., Borokhov E. A. Referat v sisteme nauchnoi kommunikatsii. Napravleniya sovershenstvovaniya lingvisticheskikh i strukturnykh kharakteristik. M.: VINITI, 1987. 323 s.
Grashchenko L. A. O model'nom stop-slovare // Izvestiya Akademii nauk Respubliki Tadzhikistan. Otdelenie fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk. 2013. № 1 (150). S. 40-46.
Domnina T. N., Khachko O. A. Nauchnye zhurnaly: kolichestvo, tempy rosta // Informatsionnoe obespechenie nauki: novye tekhnologii: sb. nauch. tr. M.: BEN RAN, 2015. C. 83-96.
Zakharov V. P., Bogdanova S. Yu. Korpusnaya lingvistika. SPb.: Izd-vo S.-Peterb. un-ta, 2020. 234 s.
Leonov V. P. Referirovanie i annotirovanie nauchno-tekhnicheskoi literatury. Novosibirsk: Nauka, 1986. 175 s.
Lukashevich N. V. Predstavlenie znanii v sisteme avtomaticheskoi obrabotki tekstov // Nauchno-tekhnicheskaya informatsiya. Seriya 2. Informatsionnye protsessy i sistemy. 1997. № 3. S. 27-33.
Novikov A. I., Suntsova N. L. Kontseptual'naya model' porozhdeniya vtorichnogo teksta // Obrabotka teksta i kognitivnye tekhnologii. 1999. № 3. S. 158-166.
Otkupshchikova M. I., Kremneva N. D., Kirichenko N. L. Funktsional'no-semanticheskaya informatsiya v slovarnykh protsedurakh dlya analiza tekstov uzkoi predmetnoi oblasti // Strukturnaya i prikladnaya lingvistika. 1993. № 4. S. 181-196.
Tarasov S. D. Sovremennye metody avtomaticheskogo referirovaniya // Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravlenie. 2010. № 6 (113). S. 59-74.
Andonov F., Slavova V., Petrov G. On the Open Text Summarizer // Information Content and Processing. 2016. Vol. 3. P. 278-287.
Babar S., Pallavi D. Improving Performance of Text Summarization // Procedia Computer Science. 2015. Vol. 46. P. 354-363.
Cremmins E. The Art of Abstracting. 2nd ed. Arlington, VA: Information Resources Press, 1994. 230 p.
Elhadi M. Extractive Summarization Using Structural Syntax, Term Expansion and Refinement // International Journal of Intelligence Science. 2017. Vol. 7. P. 55-71.
Goldstein A., Shahar Y. An automated knowledge-based textual summarization system for longitudinal, multivariate clinical data // Journal of Biomedical Informatics. 2016. Vol. 61. P. 159-175.
Hahn U. Knowledge-Based Text Summarization: Salience and Generalization Operators for Knowledge Based Abstraction // Advances in Automatic Text Summarization. The MIT Press, 1999. P. 215-232.
Luhn H. P. A Statistical Approach to Mechanized Encoding and Searching of Literary Information // IBM Journal of Research and Development. 1957. Vol. 1. P. 309-317.
Marcu D. The automatic construction of large-scale corpora for summarization research // Proceedings of the 22nd International Conference on Research and Development in Information Retrieval. 1999. August. P. 137-144.
Nation P., Anthony L. Measuring vocabulary size // Handbook of Research in Second Language Teaching and Learning: in 3 vols. / ed. by E. Hinkel. N. Y.: Routledge, 2016. Vol. III. P. 355-368.
Sahoo D., Bhoi A., Balabantaray R. Hybrid Approach to Abstractive Summarization // Procedia Computer Science. 2018. Vol. 132. P. 1228-1237.