AUTOMATIZED CONTENT ANALYSIS OF COMMENTS IN THREE SUBJECT AREAS
Brunova Elena Georgievna
Tyumen State University
Abstract. The research executed within the framework of applied linguistics is devoted to the analysis of subjective information in the user’s content. The author analyzes the comments in the Russian language from the three subject areas applying Van Rijsbergen's effectiveness measure as a criterion of efficiency. It is shown that the efficiency of the applied algorithm does not decrease while analyzing the fragments from the other subject areas. The researcher argues that the system recognizes positive comments better than negative.
Key words and phrases: прикладная лингвистика, обработка естественного языка, алгоритм, контент-анализ мнений, предметная область, пользовательский контент, applied linguistics, processing natural language, algorithm, content analysis of comments, subject area, user’s content
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Brunova E. G. Sostavlenie leksikona dlya kontent-analiza mnenii // Teoreticheskie i prikladnye aspekty izucheniya rechevoi deyatel'nosti. N. Novgorod: NGLU im. N. A. Dobrolyubova, 2013. Vyp. 1 (8). S. 24-29.
Brunova E. G., Bidulya Yu. V. Algoritm s elementami formal'noi grammatiki dlya kontent-analiza mnenii // Vestnik Tyumenskogo gosudarstvennogo universiteta. Seriya "Fiziko-matematicheskie nauki. Informatika". 2014. № 7. S. 242-250.
Ermakov S. A., Ermakova L. M. Metody otsenki emotsional'noi okraski teksta // Vestnik Permskogo universiteta. 2012. Vyp. 1 (19). S. 85-89.
Kulikov S. Yu. Avtomatizatsiya sostavleniya otsenochnogo slovarya shirokoi predmetnoi oblasti (opyt ispol'zovaniya nespetsializirovannogo korpusa tekstov) // Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2014. № 8 (91). S. 240-243.
Lukashevich N. V., Chetverkin I. I. Izvlechenie i ispol'zovanie otsenochnykh slov v zadache klassifikatsii otzyvov na tri klassa // Vychislitel'nye metody i programmirovanie. 2011. T. 12. S. 73-81.
Orobinskaya E. A., Kochueva Z. A. Tekhnologii Text Mining: Obzor metodov i zadach obrabotki smyslovoi informatsii // Vestnik Khersonskogo natsional'nogo tekhnicheskogo universiteta. 2010. № 2 (38). S. 348-353.
Pazel'skaya A. G., Solov'ev A. N. Metod opredeleniya emotsii v tekstakh na russkom yazyke // Komp'yuternaya lingvistika i intellektual'nye tekhnologii: "Dialog-2011". M.: Izd-vo RGGU, 2011. Vyp. 10 (17). S. 510-522.
Polyakova E. V. Kognitivnye osobennosti vyrazheniya moral'nykh chuvstv "Lyubov'" i "Strakh" v idiomatike russkogo i angliiskogo yazykov // Filologicheskie nauki. Voprosy teorii i praktiki. Tambov: Gramota, 2013. № 9 (27): v 2-kh ch. Ch. 2. S. 157-163.
Ganapathibhotla M., Liu B. Mining Opinions in Comparative Sentences // Proc. of the 22nd International Conference on Computational Linguistics. Manchester: Brighton, 2008. P. 241-248.
Liu B. Sentiment Analysis and Subjectivity [Elektronnyi resurs] // Handbook of Natural Language Processing. 2010. URL: http://www.cs.uic.edu/~liub/FBS/NLP-handbook-sentiment-analysis.pdf (data obrashcheniya: 27.09.2014).
Manning Ch., Raghavan P., Sch?tze H. Introduction to Information Retrieval. Cambridge: Cambridge UP, 2009. 544 p.
Pal J., Saha A. Identifying Themes in Social Media and Detecting Sentiments // International Journal of Statistics and Applications. 2011. Vol. 1. No. 1. P. 14-19.
Pang B., Lee L. Opinion Mining and Sentiment Analysis // Foundations and Trends in Information Retrieval. 2008. Vol. 2. No 1-2. P. 1-135.
Pang B., Lee L., Vaithyanathan S. Thumbs up? Sentiment Classification Using Machine Learning Techniques [Elektronnyi resurs] // Proc. of EMNLP. 2002. URL: http://www.cs.cornell.edu/people/pabo/papers/sentiment.pdf (data obrashcheniya: 27.09.2014).
Turney P. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews // Proc. of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia: University of Pennsylvania, 2002. P. 417-424.
Wiebe J., Bruce R., O’Hara T. Development and Use of a Gold-Standard Data Set for Subjectivity Classifications // Proc. of the 37th Annual Meeting of the Association for Computational Linguistics. Maryland: University of Maryland, 1999. P. 246-253.