FEATURES OF PARAMETRIC VOCABULARY IN CONTENT ANALYSIS OF OPINIONS
Brunova Elena Georgievna
Tyumen State University
Abstract. The article determines the main features of parametric vocabulary in a content analysis of opinions by the material of clients’ reviews about the quality of banking service. An improved structure of the lexicon for the content analysis of opinions is suggested. The research results show that parametric vocabulary expresses the opinion implicitly. Some of the parametric vocabulary may be assigned to one of the main classes (positive or negative lexicon), and this classification is specific to the given subject sphere. Most of the parametric vocabulary refers to the auxiliary classes (increments or decrements), and this reference seems to be universal.
Key words and phrases: обработка естественного языка, контент-анализ мнений, оценочный лексикон, предметная область, параметрическая лексика, инкремент, декремент, natural language processing, content analysis of opinions, evaluative vocabulary, subject sphere, parametric vocabulary, increment, decrement
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Brunova E. G. Metodika sostavleniya otsenochnogo leksikona dlya kontent-analiza mnenii [Elektronnyi resurs] // Language and Science. 2012. № 1. URL: http://www.utmn.ru/docs/9317.pdf (data obrashcheniya: 08.10.2014).
Brunova E. G. Sostavlenie leksikona dlya kontent-analiza mnenii // Teoreticheskie i prikladnye aspekty izucheniya rechevoi deyatel'nosti. N. Novgorod: NGLU im. N. A. Dobrolyubova, 2013. Vyp. 1 (8). S. 24-29.
Brunova E. G., Bidulya Yu. V. Algoritm s elementami formal'noi grammatiki dlya kontent-analiza mnenii // Vestnik Tyumenskogo gosudarstvennogo universiteta. Seriya "Fiziko-matematicheskie nauki. Informatika". 2014. № 7. S. 242-250.
Lukashevich N. V., Chetverkin I. I. Izvlechenie i ispol'zovanie otsenochnykh slov v zadache klassifikatsii otzyvov na tri klassa // Vychislitel'nye metody i programmirovanie. 2011. T. 12. S. 73-81.
Gamon M. et al. Pulse: Mining Customer Opinions from Free Text // Proc. of the 6th International Symposium on Intelligent Data Analysis (IDA). 2005. P. 121-132.
Ganapathibhotla M., Liu B. Mining Opinions in Comparative Sentences // Proc. of the 22nd International Conference on Computational Linguistics. Manchester, 2008. P. 241-248.
Hatzivassiloglou V., McKeown K. Predicting the Semantic Orientation of Adjectives // Proc. of the 35th Annual Meeting of ACL. Madrid, 1997. P. 174-181.
Hu M., Liu B. Mining and Summarizing Customer Reviews // Proc. of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2004. P. 168-177.
Liu B. Sentiment Analysis and Subjectivity [Elektronnyi resurs] // Handbook of Natural Language Processing: Second Edition. 2010. URL: http://www.cs.uic.edu/~liub/FBS/NLP-handbook-sentiment-analysis.pdf (data obrashcheniya: 08.10.2014).
Manning S., Raghavan P., Sch?tze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press, 2008. 544 p.
Nasukawa T., Yi J. Sentiment Analysis: Capturing Favorability Using Natural Language Processing // Proc. of the 2nd International Conference on Knowledge Capture. Florida, 2003. P. 70-77.
Pang B., Lee L. Opinion Mining and Sentiment Analysis // Foundations and Trends in Information Retrieval. 2008. Vol. 2. № 1-2. P. 1-135.
Pang B., Lee L., Vaithyanathan S. Thumbs up? Sentiment Classification Using Machine Learning Techniques [Elektronnyi resurs] // Proc. of EMNLP. 2002. URL: http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf (data obrashcheniya: 08.10.2014).
Turney P. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews // Proc. of the 40th Annual Meeting on Association for Computational Linguistics. 2002. P. 417-424.
Wiebe J., Wilson T., Bell M. Identifying Collocations for Recognizing Opinions // Proc. of ACL/EACL 01 Workshop on Collocation. 2001. R. 24-31.