SYSTEM OF ANALYSIS OF ROAD TRAFFIC ONSITE (IN LOGISTICS) BASED ON IMAGE RECOGNITION FROM CCTV CAMERAS
Morev Kirill Ivanovich, Tselykh Aleksandr Nikolaevich
Southern Federal University in Taganrog
Abstract. The article is devoted to the process of creating a system for recording automobile traffic on the protected object. The system is based on the analysis of images coming from the CCTV camera. By analyzing video fragments the system counts the number of the vehicles entering and leaving the protected area. In the process of implementation of the technical task the program for video analysis was written in the Python language, problems of preparing videos to machine processing were solved, the place for the camera-detector was selected.
Key words and phrases: компьютерное зрение, распознавание образов, автомобильный трафик, видеонаблюдение, система анализа видеоизображения, computer vision, images recognition, road traffic, CCTV, video analysis system
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Vazaev A. V., Noskov V. P., Rubtsov I. V., Tsarichenko S. G., Yaroshevich N. V. Raspoznavanie ob"ektov i tipov opornoi poverkhnosti po dannym kompleksirovannoi sistemy tekhnicheskogo zreniya // Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki. 2016. № 2. S. 127-139.
Yurevich E. I. Osnovy robototekhniki: uch. posobie dlya stud. vuz. 2-e izd. SPb, 2007. 203 s.
Bay H., Tuytelaars T., Van Gool L. SURF: Speeded Up Robust Features // Computer Vision and Image Understanding. 2008. Vol. 110. P. 346-359.
Bechtel W. The Cardinal Mercier Lectures at the Catholic University of Louvain. Lecture 2: An Exemplar Neural Mechanism: The Brain’s Visual Processing System [Elektronnyi resurs]. Leuven, 2003. URL: http://mechanism.ucsd.edu/~bill/ research/mercier/2ndlecture.pdf (data obrashcheniya: 15.02.2017).
Ciresan D. C., Meier U., Masci J., Schmidhuber J. Multi-Column Deep Neural Network for Traffic Sign Classification // Neural Networks. 2012. Vol. 34. P. 333-338.