Abstract. The article gives a solution of Jacobian problem for the ring of polynomials over the field of complex numbers depending on two parameters. Examples show relationship between mutual one-oneness of mapping determined by polynomials and Jacobian finiteness. The paper identifies the conditions of the validity of Jacobian criterion. The statement proving is carried out with the induction method on the basis of the degree of the polynomial. The author suggests a way to generalize the statement in case of polynomials in several variables.
Key words and phrases: алгебра, поле комплексных чисел, проблема якобиана, полином, автоморфизм кольца многочленов, функциональный определитель, гессиан, algebra, field of complex numbers, Jacobian problem, polynomial, polynomial ring automorphism, functional determinant, Hessian
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Verden van der B. L. Algebra. M.: Nauka, 1976. 648 s.
Gurvits A., Kurant R. Teoriya funktsii. M.: Nauka, 1968. 618 s.
Puankare A. Izbrannye trudy. M.: Nauka, 1972. T. 2. Topologiya. 999 s.