Romanov Vadim Nikolaevich
National Mineral Resources University
Abstract. In the article the generalization of cluster analysis for indefinite information environment case using fuzzy models is given. The advantages of the suggested approach, which allows reducing the ambiguity of objects distribution according to clusters and order levels, substantiating the choice of affinity measure between objects, and leveling mistakes connected with data disagreement are shown.
Key words and phrases: классификация, кластерный анализ, кластер, нечеткая модель, нечеткая мера сходства, classification, cluster analysis, cluster, fuzzy model, fuzzy measure of affinity
Open the whole article in PDF format. Free PDF-files viewer can be downloaded here.
References:
Aivazyan S. A., Bukhshtaber V. M., Enyukov I. S., Meshalkin L. D. Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti. M.: Finansy i statistika, 1989. 607 s.
Romanov V. N. Nechetkie modeli prinyatiya reshenii // Al'manakh sovremennoi nauki i obrazovaniya. Tambov: Gramota, 2013. № 5. S. 144-147.
Romanov V. N. Nechetkie sistemy. SPb.: LEMA, 2009. 183 s.
Romanov V. N. Opredelenie sushchestvennykh priznakov v zadachakh identifikatsii topologicheskimi metodami // Al'manakh sovremennoi nauki i obrazovaniya. Tambov: Gramota, 2013. № 7. S. 122-129.