Федоненко Марина Евгеньевна

ПАТЕНТНАЯ СПЕЦИАЛИЗАЦИЯ СТРАН ЕС В ВЫСОКИХ ТЕХНОЛОГИЯХ

Переход экономики страны на инновационный путь развития в условиях глобализации и все более глубокой интеграции страны в мирохозяйственные связи, рост открытости экономики являются императивом для сохранения устойчивых темпов экономического роста в среднесрочной и долгосрочной перспективах. Поэтому автор посвятил статью одному из показателей, который наиболее ярко отражает стремление нации к инновациям и новым технологиям, а именно, количеству патентов, которые она производит.

Адрес статьи: www.gramota.net/materials/1/2013/2/52.html

Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по рассматриваемому вопросу.

Источник

Альманах современной науки и образования

Тамбов: Грамота, 2013. № 2 (69). С. 179-184. ISSN 1993-5552.

Адрес журнала: www.gramota.net/editions/1.html

Содержание данного номера журнала: www.gramota.net/materials/1/2013/2/

© Издательство "Грамота"

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: www.gramota.net Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: almanac@gramota.net

Институт государственного заказа предполагает наличие развитой инфраструктуры: управляющего центра, тендерных комитетов, базы данных, арбитража, специальной нормативно-правовой базы, контроля и т.д. Решение данных проблем предполагает формирование и эффективное функционирование федеральной контрактной системы (ФКС), целью которой является «реализация единого цикла формирования, размещения государственного заказа и исполнения государственных контрактов, который позволяет обеспечить выполнение публичных обязательств государства, адекватное потребностям государства качество поставляемых товаров, работ, услуг, эффективное использование ресурсов, надежное управление технологическими и экономическими рисками, существенное снижение коррупции в государственном секторе» [8].

Взаимоотношения между реальным сектором экономики и бюджетной системой могут быть классифицированы также по объему денежных потоков, по целевому использованию получаемых денежных средств соответствующими сторонами, по организационно-правовой форме предприятия - участника этих отношений, по методам финансирования, по наличию льгот и лимитов денежных средств, организационно-технологическим процедурам, количеству участников, виду финансового инструмента и по другим признакам.

В качестве основных форм привлечения бюджетных средств предприятиями выступают: 1) оплата товаров, работ и услуг, выполняемых по государственным и муниципальным контрактам; 2) бюджетные кредиты юридическим лицам (в том числе налоговые кредиты, отсрочки и рассрочки по уплате налогов и платежей и других обязательств); 3) субвенции и субсидии организациям, имеющим стратегическое значение; 4) бюджетные инвестиции в уставные капиталы действующих и вновь создаваемых юридических лиц.

Основными формами вложения средств предприятий в бюджеты разных уровней являются налоговые платежи и приобретение государственных и муниципальных ценных бумаг.

Анализ форм взаимодействия предприятий и бюджетной системы связан с совершенствованием нормативно-правовой базы регулирования рассмотренных отношений, основу которой составляют Гражданский и Бюджетный кодексы Российской Федерации. При этом формирование институтов государственного кредита, трансфертов, контрактации и государственных закупок, приватизации, налогообложения и других должно, в конечном итоге, стимулировать инновационную активность предприятий и способствовать повышению народно-хозяйственной эффективности.

Список литературы

- 1. Бюджетный кодекс Российской Федерации. Новосибирск: Норматика: Сиб. унив. изд-во, 2012. 224 с.
- 2. Взаимоотношения предприятий с бюджетом и внебюджетными фондами [Электронный ресурс]. URL: http://mgumoscow.blogspot.ru/2011/04/blog-post 2995.html
- 3. Основные направления налоговой политики Российской Федерации на 2013 год и на плановый период 2014 и 2015 годов [Электронный ресурс]. URL: http://www.minfin.ru/common/img/uploaded/.../ONNP 2013-2015.pdf
- 4. Прогнозный план (программа) приватизации федерального имущества и основные направления приватизации федерального имущества на 2011-2013 годы [Электронный ресурс]. URL: http://www.kommersant.ru/gboxtexts/privatizacia1.doc
- Российский статистический ежегодник. 2012 г. [Электронный ресурс]. URL: http://www.gks.ru/wps/wcm/connect/rosstat/rosstatsite/main/publishing/catalog/statisticCollections/doc_1135087342078
- Сагайдачная Н. К. Безэквивалентные и эквивалентные отношения в финансовой и бюджетной системах // Проблемы учета и финансов. 2012. № 3 (7).
- 7. Статистический обзор по Российской Федерации за 9 месяцев 2012 года // Статистическое обозрение. 2012. № 4 (83).
- 8. Федеральная контрактная система [Электронный ресурс]. URL: http://www.economy.gov.ru/activity/sections/system
- 9. Финансы России. 2012 г. [Электронный ресурс]. URL: http://www.gks.ru/wps/wcm/connect/rosstats/rosstatsite/main/publishing/catalog/statisticCollections/doc 1138717651859

УДК 39:9.76

Экономические науки

Переход экономики страны на инновационный путь развития в условиях глобализации и все более глубокой интеграции страны в мирохозяйственные связи, рост открытости экономики являются императивом для сохранения устойчивых темпов экономического роста в среднесрочной и долгосрочной перспективах. Поэтому автор посвятил статью одному из показателей, который наиболее ярко отражает стремление нации к инновациям и новым технологиям, а именно, количеству патентов, которые она производит.

Ключевые слова и фразы: Европейское патентное общество; высокотехнологичная специализация; национальная инновационная система; страны EC; инвестиционно-инновационная деятельность.

Федоненко Марина Евгеньевна

Днепропетровский национальный университет им. Олеся Гончара, Украина fedonenko0807@ukr.net

ПАТЕНТНАЯ СПЕЦИАЛИЗАЦИЯ СТРАН ЕС В ВЫСОКИХ ТЕХНОЛОГИЯХ[©]

Конкуренция в высокотехнологичных отраслях имеет следующую особенность: монопольные конкурентные преимущества стран и компаний очень краткосрочные, что и создает предпосылки для получения

-

[©] Федоненко М. Е., 2013

конкурентных преимуществ в будущем для стран, которые в настоящее время не являются инновационными лидерами, поэтому очень важен уровень развития патентной специализации страны. Проблемы и особенности развития патентной специализации нашли своё отображение в исследованиях И. А. Егорова [1, с. 4-5], Д. Ю. Соколова [3; 4], Н. П. Мешко [2, с. 305], А. А. Мазур, О. И. Шныркова, М. В. Арапова, О. Б. Салихова и др.

В эпоху глобализации мировой экономики основа успешного позиционирования страны, региона, отрасли лежит в постоянном инновационном обновлении, направленном на достижение максимальной производительности. По существующим оценкам в развитых странах от 50% до 90% роста ВВП определяется инновациями и технологическим прогрессом, а инновации и, в частности, патенты становятся обязательным условием и основным «мотором» развития всех секторов промышленности и сферы услуг.

Патентование высокотехнологичных исследований в современных условиях является весомым фактором получения конкурентных преимуществ в МРТ в среднесрочной и долгосрочной перспективе, как для отдельных субъектов рынка, так и стран. На основе анализа количества патентных аппликаций, поданных в Европейское патентное ведомство (ЕПВ), а также тех из них, которые прошли процедуру обеспечения, выявлены страны, специализирующиеся на патентовании высокотехнологичных разработок, наиболее активно и качественно готовящие такие аппликации.

Согласно данным ЕПВ, в 2009 году поступило 134 542 аппликации от более чем 35 тысяч коммерческих организаций, общественных институтов, университетов, исследовательских центров и индивидуальных. Большинство патентных аппликаций подали компании, организации и физические лица из США (24%), Германии (19%) и Японии (15%) [1, с. 5].

Значительную долю в структуре патентных аппликаций имеют еще четыре европейские страны: Франция (7%), Нидерланды (5%), Швейцария (4%) и Великобритания (4%). Что касается аппликантов, которые активно подавали аппликации в Европейское патентное бюро в 2009 году, то это в основном компании, которые входят в ТОП-100 мировых лидеров изобретателей. Большинство активных компаний-заявителей сосредоточено в США, Японии, Германии и Франции [9] (Табл. 1).

Больше всего предложений в 2009 году подали: голландская компания *Philips* (2556), немецкие - *Siemens* (1708), *Basf* (1699) и *Robert Bosh* (1284), а также корейские - *Samsung* (1337) и *LG Corporation* (1221).

Процедура рассмотрения аппликации в ЕПБ - это долговременный процесс (1-2 года) и включает несколько стадий: заполнение патентной аппликации, проверку соблюдения всех формальностей, проведение поиска на новацию, публикацию аппликации. По тем заявкам, которые на любом этапе не прошли требования, дается отказ; те, которые выдержали все этапы экспертизы, публикуются, и на них распространяются гарантии от Европейской патентной организации на поддержание интеллектуальных прав на изобретение. Поэтому важным показателем является количество «гарантированных» аппликаций Европейского патентного ведомства, их количество значительно меньше по сравнению с показателем заявок [3, с. 25].

Технологическая интеграция в мировой экономике проявляется через активизацию инновационной деятельности дочерних предприятий международных компаний, путем экспорта инвестиций в интеллектуальный капитал. Эти тенденции характерны и для Евросоюза, растет доля запатентованных интеллектуальных активов международных компаний США, Японии, Кореи, Канады, Китая, разработанных и внедряемых в еврозоне. Под влиянием этого экзогенного фактора будет расти конкуренция в сфере высоких технологий как на европейском рынке, так и мировом, за счет роста экспорта высокотехнологичных товаров и услуг из стран ЕС [4, с. 48].

Высокий уровень качества подачи заявок, на которые были выданы патенты ЕПО, имеют заявители ЕС, 48,2% патентов принадлежат странам-членам ЕС. В рамках этого показателя лидерами среди стран Европы по количеству «гарантированных патентов» являются Германия и Швейцария. Коммерческим и некоммерческим организациям из Германии принадлежит более 45% всех «гарантированных патентов» ЕС (Табл. 2).

Высокие показатели среди стран ЕС имеют Франция - 16,10%, Италия -7,91%, Великобритания - 6,57%, Нидерланды - 6,37% и Швеция - 5,21%. Среди аппликаций, которые были поданы в ЕПО всеми международными компаниями, по признаку принадлежности к высоким технологиям крупнейший сегмент занимают заявки на научные разработки в сфере ИТ-технологий - 13%, технологий общего назначения и транспортной сфере - 12%, электричестве и полупроводниках - 9% и предметах первой необходимости - 9% (Табл. 3). В странах Европы сосредоточенны научные лаборатории, институты, университетские научно-исследовательские лаборатории, основными направлениями деятельности которых являются фундаментальные и прикладные исследования [6].

Процесс транснационализации экономики стран EC является глобальным фактором влияния на перераспределение конкурентных преимуществ в сфере высоких технологий между европейскими компаниями и компаниями с иностранным капиталом.

Рост влияния ТНК усиливается за счёт процессов слияния и поглощения компаний как внутри стран ЕС, так и через создание новых предприятий и дочерних компаний международных корпораций. Однако в области патентной высокотехнологичной специализации сохраняется доминирование европейских стран во всех сегментах зарегистрированных патентов в высоких технологиях (Табл. 4).

Табл. 1. Страны происхождения 100 самых активных аппликантов в Европейское патентное бюро (2009 год)

Страна	Аппликанты	Коли	чество	Количество		
1		аппли	икаций	аппликантов		
		Ед.	%	Ед.	%	
CIIIA	QUALCOMM, ALCATEL-LUCENT, GENERAL ELECTRIC, HONEYWELL, THOMPSON LICENSING, IBM, 3M, DU PONT, MICROSOFT, CONTINENTAL, PROCTER, TYCO HEALTHCARE, INTEL, NESTEC, EXXONMOBIL, ABBOTT, KODAK, DOW, HEWLETT-PACKARD, DELPHI TECHNOLOGIES, MOTOROLA, MERCK SERONO, UNITED TECHNOLOGIES CORPORATION, BOSTON SCIENTIFIC, BOEING, KIMBERLY-CLARK WORLDWIDE, INC., MEDTRONIC, INC., DEERE & COMPANY, CORNING, INCORPORATED, APPLE, INC., ETHICON ENDO-SERGERY, INC., INTERDIGITAL TECHNOLOGY CORP., XEROX CORP.	11 219	25,4	33	33	
RинопR	PANASONIC, TOYOTA, SONY, MITSUBISHI, FUJITSU, HITACHI, CANON, SUMITOMO, FUJIFILM, NEC, NTT DUCOMO, SONY ERICSSON, TOSHIBA, HONDA, SHARP, OLYMPUS, RICOH, NITTO DENKO CORP., NGK INSOLATORS, LTD., AISIN, BRIDGESTONE CORP., SEIKO EPSON CORP., YAMAHA, BROTHER KOGYO KABUSHIKI KAISHA	10 635	24,0	24	24	
Германия	SIEMENS, BASF, BAYER, ROBERT BOSH, BSH, HEN- KEL, ZF FRIEDRICHSHAFEN, OSRAM, BOEHRINGER INGELHEIM, FRAUNHOFER, EVONIK, VOITH PA- TENT GMBH, ROCHE DIAGNOSTICS GMBH	7 927	18,0	13	13	
Франция	SANOFI-AVENTIS, COMMISSARIAT A L'ENERGIE, ATOMIQUE, PEUGEOT CITROEN, RENAULT, ALSTOM, THALES, AIRBUS, L'OREAL, FRANCE TELECOM, VALEO	2323	5,4	10	10	
Великобритания	UNILEVER, ROLLS-ROYCE, DAIKIN, GLAXO, ASTRAZENECA	1186	2,6	5	5	
Нидерланды	PHILIPS, NXP, DSM IP, NEDERLANDSE CENTRALE ORGANISATIE VOOR, TOEGERPAST	3776	8,5	4	4	
Швейцария	HOFFMANN-LA ROCHE, ABB, NOVARTIS	1242	2,8	3	3	
Финляндия	NOKIA, NOKIA SIEMENS	757	1,7	2	2	
Корея	SAMSUNG, LG CORP.	2558	5,8	2	2	
Швеция	ERICSSON	827	1,8	1	1	
Китай	HUAWEI	672	1,5	1	1	
Канада	RESEARCH IN MOTION	649	1,5	1	1	
Дания	SHELL	398	1,0	1	1	
Всего		44169	100	100	100	

^{*}Составлено автором на основании источника [8].

Табл. 2. Патенты, выданные ЕПО субъектам ЕС, по странам происхождения

№	Страна	Кол-во патентов (2009)	Удельный вес, %	№	Страна	Кол-во патентов (2009)	Удельный вес, %
1.	Германия	11384	45,46%	15.	Венгрия	38	0,15%
2.	Франция	4031	16,10%	16.	Польша	33	0,13%
3.	Великобритания	1646	6,57%	17.	Словения	28	0,11%
4.	Нидерланды	1595	6,37%	18.	Кипр	24	0,10%
5.	Швеция	1305	5,21%	19.	Португалия	24	0,10%
6.	Италия	1992	7,95%	20.	Греция	24	0,10%
7.	Финляндия	662	2,64%	21.	Мальта	12	0,05%
8.	Австрия	580	2,32%	22.	Словакия	9	0,04%
9.	Бельгия	583	2,33%	23.	Эстония	8	0,03%
10.	Дания	436	1,74%	24.	Болгария	5	0,02%
11.	Испания	348	1,39%	25.	Румыния	4	0,02%
12.	Ирландия	145	0,58%	26.	Латвия	2	0,01%
13.	Литва	84	0,34%	27.	Люксембург	0	0,00%
14.	Чешская Республика	40	0,16%		ВСЕГО	2156	3784

^{*}Составлено автором на основании источника [8].

Табл. 3. Структура аппликаций ЕПО по технологическому признаку, 2009 г.

Отрасль	Количество	Удельный вес, %	
	аппликаций		
Обработка информации и данных	6 776	13%	
Транспорт и общие технологии	6 279	12%	
Электрика и полупроводники	4 707	9%	
Человеческие потребности (в т.ч. сельское хозяйство и медицина)	4 868	9%	
Гражданская инженерия и термодинамика	3 925	8%	
Промышленная химия	3 994	8%	
Чистая и прикладная органическая химия	3 778	7%	
Телекоммуникации	2 933	6%	
Электроника	3 045	6%	
Измерения и оптика	2 723	5%	
Полимеры	2 845	5%	
Биотехнологии	2 749	5%	
Аудио, видео, медиа	2 038	4%	
Компьютеры	1 309	3%	
ВСЕГО	51 969	100%	

^{*}Составлено автором на основании источника [8].

Это следует рассматривать как следствие полученных конкурентных преимуществ в предыдущих периодах экономического развития национальных экономик стран ЕС и реализацию стратегических целей протекционистской политики ЕС в создании единого инновационного пространства. Однако есть такие сферы высоких технологий, в которых конкурентные преимущества как на мировых рынках, так и на европейском, как в сфере производства, так и в сфере патентования имеют мировые инновационные лидеры - США и Япония. Это объясняет то, что субъекты ЕС (по сравнению с другими странами-лидерами инновационных процессов) редко подают аппликации в компьютерной и аудио-, видео- и медиа-сферах [2, с. 305].

Табл. 4. Патенты, выданные ЕПО субъектам стран ЕС в 2009 году, по видам технологий

Отрасль	Кол-во аппликаций	Удельный вес, %	
Обработка информации и данных	3 784	15%	
Транспорт и общие технологии	3 875	15%	
Электрика и полупроводники	2 568	10%	
Человеческие потребности (в т.ч. сельское хозяйство и медицина)	2 156	9%	
Гражданская инженерия и термодинамика	2 158	9%	
Промышленная химия	1 895	7%	
Чистая и прикладная органическая химия	1 681	7%	
Телекоммуникации	1 152	5%	
Электроника	1 308	5%	
Измерения и оптика	1 185	5%	
Полимеры	1 194	5%	
Биотехнологии	1 029	4%	
Аудио, видео, медиа	604	2%	
Компьютеры	463	2%	
ВСЕГО		100%	

^{*}Составлено автором на основании источника [8].

Инновационная активность и результативность научно-технологической деятельности в ЕС, как уже доказано, существенно отличаются по входным и выходным параметрам в странах Западной Европы и других странах ЕС [Там же]. Концентрация патентной высокотехнологичной специализации по отраслевому признаку характерна для ограниченного числа стран ЕС - Германии, Франции, Великобритании, Нидерландов, Швеции и Италии (Табл. 5).

Германия имеет самый высокий уровень патентной специализации по спектру высокотехнологичных отраслей: 19% - в сфере транспорта и общих технологий, 12% - гражданской инженерии и термодинамике, а также 17% - обработки данных и информации. Все остальные секторы более или менее равномерно представлены, кроме области, где страны ЕС традиционно показывают невысокую активность: компьютеры и компьютерные технологии.

Специализацией Франции, согласно анализу патентных аппликаций, являются транспорт и общие технологии - 17%, обработка информации и баз данных - 11%, а также электричество и полупроводники - 10%.

Отрасль	Германия		Франция		Великобритания		Нидерланды		Швеция		Италия	
	Кол-	%	Кол-	%	Кол-	%	Кол-	%	Кол-	%	Кол-	%
	во		во		во		во		во		во	
Электрика	965	8	392	10	117	7	163	10	155	12	119	6
и полупроводники												
Обработка инфор-	1898	17	452	11	157	10	136	9	164	12	482	24
мации и данных												
Аудио-, видео-,	172	2	149	4	59	4	88	5	38	3	17	1
медиа												
Человеческие	810	7	349	9	203	12	155	10	104	8	214	11
потребности												
Промышленная	848	7	330	8	154	9	141	9	50	4	118	6
КИМИХ												
Полимеры	643	6	110	3	36	2	136	9	24	2	92	5
Электроника	527	5	255	6	74	4	191	12	67	4	84	4
Чистая и приклад-	652	6	213	5	229	14	104	6	94	7	133	7
ная органическая												
КИМИХ												
Компьютеры	155	1	83	2	41	2	56	3	38	3	19	1
Биотехнологии	340	2	175	4	130	8	75	5	43	3	46	2
Телекоммуникации	285	2	275	7	62	4	94	6	243	19	23	1
Измерение и оптика	589	5	184	5	99	6	87	5	47	4	81	4
Гражданская инже-	1324	12	364	9	125	8	77	5	102	8	228	11
нерия и термоди-												
намика												
Транспорт и общие	2176	19	700	17	160	10	92	6	136	10	336	17

Табл. 5. Патенты ЕПО, выданные странам ЕС - лидерам по патентам в 2009 году

Транспорт и общие технологии ΒСΕΓΟ

Великобритания, Нидерланды, Швеция - каждая из этих стран специализируется в научных исследованиях по двум-трем избранным направлениям. Наибольший уровень концентрации в одном кластере среди странлидеров ЕС по количеству патентов, выданных в 2009 году, продемонстрировала Италия. Так, сфера обработки информации и данных достигла уровня 24% всех патентов ЕПО, а транспорт и технологии - 17%. Высокие показатели имеют также гражданская инженерия и термодинамика - 10% и человеческие потребности - 11%.

Таким образом, наблюдается тенденция, что, чем большее количество аппликаций от страны ЕС, тем шире представлены сферы ее специализации в абсолютном измерении, и наоборот.

С целью определения сравнительных конкурентных преимуществ в патентной специализации стран ЕС, как показатель «нормализации» была использована общая доля технологий в структуре патентов ЕПО (Табл. 4) и сравнение ее со значениями этого же показателя для отдельной страны (Табл. 5). Применённый методический подход позволил систематизировать страны ЕС по уровню конкурентных преимуществ в патентной высокотехнологичной специализации (Табл. 6). Наибольшее количество секторов патентной специализации имеют Нидерланды (по 9 позициям), наименьшую - Германия и Италия (по 3 позициям). Германия имеет относительный уровень конкурентных преимуществ по полученным патентам в сферах обработки информации, полимеров и транспорта и общих технологий. Практически такую же специализацию имеет Италия, только вместо полимеров она специализируется в патентовании технологий в сфере человеческих потребностей.

Франция специализируется на телекоммуникациях, транспорте и общих технологиях, аудио-, видео- и медиа-технологиях, электричестве, промышленной химии и полупроводниках.

Сопоставление конкурентных преимуществ стран и сфер высокотехнологичной специализации в экспорте товаров и услуг, уровней патентной специализации позволяет определить, что нет очевидного совпадения между этими показателями. Следует отметить, что проведение сравнений усложняется различными подходами к классификации сфер технологий. Однако в некоторых случаях такое совпадение существует. Так, например, сравнительные преимущества патентной и экспортной специализации для Нидерландов наблюдаются в одних и тех же секторах (компьютеры, телекоммуникации и т.д.). Для других стран это совпадение не столь очевидно [5, р. 256].

Таким образом, можно сделать вывод, что конкурентные преимущества стран ЕС достаточно диверсифицированы по отраслевым и товарным видам патентной высокотехнологичной специализации стран. Отраслевая патентная специализация по некоторым странам и технологиям совпадает, но прямого отождествления в этих показателях не происходит, т.е. патентная специализация в определенной области еще не означает экспортную специализацию в этой же области и наоборот.

^{*}Составлено автором на основании источника [8].

Табл. 6. Сравнительная патентная специализация по видам технологии

	Германия	Франция	Велико- британия	Нидер- ланды	Швеция	Италия
Электрика и полупроводники	0,89	1,11	0,78	1,11	1,33	0,67
Обработка информации и данных	1,13	0,73	0,67	0,60	0,80	1,60
Аудио, видео, медиа	1,00	2,00	2,00	2,50	1,50	0,50
Человеческие потребности	0,78	1,00	1,33	1,11	0,89	1,22
Промышленная химия	1,00	1,14	1,29	1,29	0,57	0,86
Полимеры	1,20	0,60	0,40	1,80	0,40	1,00
Электроника	1,00	1,20	0,80	2,40	0,80	0,80
Чистая и прикладная органическая химия	0,86	0,71	2,00	0,86	1,00	1,00
Компьютеры	0,50	1,00	1,00	1,50	1,50	0,50
Биотехнологии	0,50	1,00	2,00	1,25	0,75	0,50
Телекоммуникации	0,40	1,40	0,80	1,20	3,80	0,20
Измерение и оптика	1,00	1,00	1,20	1,00	0,80	0,80
Гражданская инженерия и термодинамика	1,20	0,90	0,80	0,50	0,80	1,10
Транспорт и общие технологии	1,27	1,13	0,67	0,40	0,67	1,13

Объяснить это можно тем, что не все ожидания изобретателей на стремительный выход на новые рынки осуществляются. Кроме того, следует учитывать, что между получением патента, его коммерциализацией и налаживанием массового производства находится существенный промежуток времени. Соответственно экспортная специализация может быть следствием патентной специализации в определенной отрасли или товарной группе и хронологически не совпадает с возникновением патентной специализации. Использование примененного методологического подхода позволяет определить текущее состояние и тенденции изменения сравнительных преимуществ стран мира на рынках высоких технологий в условиях глобальной конкуренции. Характерными для развития высокотехнологичной экономики являются усиление отраслевой конкуренции в сфере высоких технологий, смещение конкурентных преимуществ в сферу интеллектуальных факторов производства товаров и услуг, общемировая тенденция ускорения изменения технологий и влияние других глобальных факторов. Поэтому даже высокий уровень патентной высокотехнологичной специализации любой страны в текущий период не гарантирует получение высокого уровня экспортной специализации в этой области и конкурентных преимуществ в будущем.

Список литературы

- 1. Егоров И. Состояние научно-технологической сферы в странах Европейского Союза. К., 2001. С. 4-5.
- **2. Мешко Н. П.** Інноваційний розвиток країн світової економіки в умовах глобалізації: монографія. Донецьк: Юго-Восток. 2008. 305 с.
- 3. Соколов Д. Ю. Патентная экспертиза глазами эксперта и изобретателя // Патенты и лицензии. 2011. № 1. С. 45-51.
- 4. Соколов Д. Ю. Патентование изобретений, основанных на открытиях // Патенты и лицензии. 2010. № 9. С. 21-27.
- Eaton J., Kortum S. Trade in Ideas: Productivity and Patenting in the OECD // Journal of International Economics. 1996. № 40. P. 251-278.
- 6. Science, Technology and Competitiveness: Key Figures 2008/2009 [Электронный ресурс]. URL: http://epp.eurostat.ec.europa.eu
- 7. Slocum S. M., Lumberg C. O. Tools to Forecast Technology Innovations [Электронный ресурс]. URL: http://www.realinnovation.com/content/c070416a.asp#authors
- 8. Top 100 Applicants 2009 [Электронный ресурс]. URL: http://www.epo.org
- World Patent Report Confirms Increasing Internationalization of Innovative Activity [Электронный ресурс]. URL: http://www.wipo.int/pressroom/en/articles/2008/article 0042.html