Бреславцева Ирина Валентиновна, Афанасьев Михаил Михайлович

АНАЛИЗ СОСТАВЛЯЮЩИХ ЧИСТОЙ ПРИБЫЛИ БАНКА МЕТОДАМИ КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА

Адрес статьи: www.gramota.net/materials/1/2012/4/9.html
Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по данному вопросу.

Источник

Альманах современной науки и образования

Тамбов: Грамота, 2012. № 4 (59). С. 40-44. ISSN 1993-5552.

Адрес журнала: www.gramota.net/editions/1.html
Содержание данного номера журнала: www.gramota.net/materials/1/2012/4/

<u>© Издательство "Грамота"</u>

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: <u>www.gramota.net</u> Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: almanac@gramota.net

Здесь содержится, однако, важное указание на то, что прямота может восприниматься как обидная и даже оскорбительная манера представителями тех культур, где очень развитый речевой этикет играет важную роль при общении. Насколько это свойственно русской культуре - вопрос дискуссионный. Однако можно предположить, что поддержание межличностных связей, которым в России придается исключительно важное значение, порождает такое явление при общении, как обмен фразами, которые немец охарактеризовал бы как пустые, лишние и не имеющие отношения к делу. Допустим, «да» сказать невозможно, а отрицательный ответ может привести к конфликту. В этом случае русские «может быть», «вероятно», «я пока не могу сказать», сопровождаемые использованием разнообразных паравербальных и невербальных средств, следует воспринимать скорее всего как форму вежливого отказа, или как свидетельство нежелания брать на себя ответственность и связывать себя обещанием. Но представителю культуры «прямоты и ясности» это будет непонятно, в результате чего вполне может возникнуть конфликтная ситуация.

Подводя итоги, автор статьи приходит к выводу о том, что ситуация общения представителей двух культур, имеющих не только разный уровень контекстуальности, но и разные, а часто и противоположные системы базовых ценностей, является ситуацией взаимодействия двух сложных систем. Каждая из них имеет, как айсберг, надводную часть (манифестируемые позитивные ценности) и подводную часть (отрицательное воздействие этих ценностей на другие сферы, на качества и свойства большинства индивидуумов, плюс неспособность осознать эту взаимосвязь в рамках собственной культуры).

В такой ситуации следует проявлять максимальную толерантность и стремление к пониманию как самого себя, так и собеседника. Автор статьи отдает себе отчет в том, что она носит дискуссионный характер, и надеется на продолжение исследований в этой области.

Список литературы

- 1. Baumgart A., Jänecke B. Russlandknigge. München Oldenbourg, 1997. S. 52.
- 2. Opaschowski H. Deutschland 2020. München: Munich Business School, 2006. S. 49.

УДК 330.4(06)

Экономические науки

Ирина Валентиновна Бреславцева, Михаил Михайлович Афанасьев Шахтинский институт (филиал) Южно-Российского государственного технического университета (Новочеркасского политехнического института)

АНАЛИЗ СОСТАВЛЯЮЩИХ ЧИСТОЙ ПРИБЫЛИ БАНКА МЕТОДАМИ КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА $^{\circ}$

Математической статистикой называют науку, изучающую явления в жизни общества с их количественной стороны, для чего в математической статистике разрабатываются и применяются разнообразные методы, совокупность которых образует статистическую методологию, составными элементами которой являются:

- массовое статистическое наблюдение;
- статистическая сводка и обработка первичной информации;
- анализ статистической информации.

Как известно, банки - основная составная часть кредитно-финансовой системы любой страны. От эффективности их функционирования зависит рост благосостояния страны. Целью функционирования коммерческого банка, как и любого другого предприятия, является получение прибыли. Прибыль в данном случае составляется из различных видов комиссионных доходов, доходов от кредитования и активных операций. Однако большую часть чистой прибыли (ЧП) банка составляет именно объём комиссионных доходов (ОКД). Этот вид доходов включает в себя комиссии, которые оплачивает клиент за услуги, предоставляемые банком (например, обслуживание ссудных счётов, выдача наличных юридическим лицам и т.д.). Следовательно, можно предположить, что между этими показателями существует некоторая зависимость, определив которую можно планировать прибыль банка, зная объём ОКД.

В качестве исходных данных в работе были приняты показатели Юго-Западного сберегательного банка России за 2006-2010 годы (см. Таблица 1):

Таблица 1

	2006	2007	2008	2009	2010
ОКД (млрд руб.)	16	22,1	34,7	54,2	73,5
ЧП (млрд руб.)	31,2	33,7	43,7	62,9	87,9

[©] Бреславцева И. В., Афанасьев М. М., 2012

В естественных науках для описания функционирования системы используется в основном функциональная связь (когда значению одной переменной соответствует одно или несколько точно заданных значений другой переменной). В экономических же исследованиях чаще используется другой вид связи - статистическая (с изменением значения одной из переменных вторая может в определённых пределах принимать любые значения, но её статистические характеристики изменяются по определённому закону). Важнейшим частным случаем статистической связи - корреляционная связь. При корреляционной связи разным значениям одной переменной соответствуют различные средние значения другой переменной, т.е. с изменением значения некоторого признака х закономерным образом изменяется среднее значение признака у.

По направлению действия корреляционной связи могут быть прямыми и обратными, по форме - прямолинейными и криволинейными, по количеству факторов, действующих на результативный признак - однофакторными (один фактор) и многофакторными (два фактора и более). Однофакторные связи обычно называются парными (т.к. рассматривается пара признаков). Например, корреляционная связь между прибылью и объёмом комиссионных доходов.

Для определения тесноты связей между показателями ОКД И ЧП банка, оценки факторов, оказывающих наибольшее влияние на ЧП, установления степени влияния ОКД на ЧП, выбора типа и форы неизвестных причинных связей, а также определение расчётных значений ЧП (функции регрессии) используют корреляционный и регрессионный анализы, что позволяет прогнозировать в будущем ЧП банка.

Исследование связей в условиях массового наблюдения и действия случайных факторов осуществляется с помощью экономико-статистических моделей, которые представляют собой логическое или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса, и дают возможность установить основные закономерности го изменения.

Как известно, важнейшим этапом построения регрессионной модели (уравнения регрессии) является выбор вида математической функции, которая наилучшим образом определяет существующие связи между анализируемыми признаками.

В данном случае, за результативный признак мы приняли размер ЧП, а за факторный - ОКД, Анализ исходных данных, приведённых в Таблице 1 и на Рисунке 1, позволяет предположить, что уравнение парной линейной корреляционной связи имеет вид функции:

$$y = a_0 + a_1 x \tag{1}$$

где у - теоретические значения ЧП, полученные по уравнению регрессии;

- ОКД банка;
- коэффициенты уравнения регрессии.

Коэффициент a_1 указывает на силу связи между результативным и факторным признаками (ОКД и ЧП). Уравнение (1) показывает среднее значение изменения ЧП при изменении показателя ОКД на одну единицу его измерения, а a_1 указывает направление этого изменения, т.е. зависит от единиц измерения.

Параметры уравнения можно определить методом наименьших квадратов, в основу которого положено требование минимальности сумм квадратов отклонений эмпирических данных от теоретических \hat{y} , для чего составим функцию двух переменных:

$$\phi(a_0, a_1) = \sum_i (y_i - \hat{y})^2 = \sum_i (y_i - (a_0 - a_1 x_i))^2 \rightarrow \min_i$$

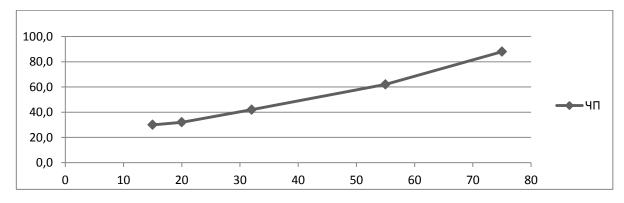


Рис. 1

Для нахождения минимума данной функции приравняем к нулю её частные производные (2) и получим систему двух линейных уравнений (3), которая называется системой нормальных уравнений:

$$\begin{cases} \frac{\partial \phi}{\partial a_0} = 0\\ \frac{\partial \phi}{\partial a_1} = 0 \end{cases} \tag{2}$$

$$\begin{cases} na_0 + a_1 \sum x = \sum y \\ a_0 \sum x + a_1 \sum x^2 = \sum xy \end{cases}$$
(3)

Следовательно, значения параметров а₀, а₁ имеют вид:

$$a_0 = \frac{n\sum xy - \sum y\sum x}{n\sum x^2 - \sum x\sum y} = 0,991;$$
 $a_1 = \frac{\sum y\sum x^2 - \sum xy\sum x}{n\sum x^2 - \sum x\sum y} = 12,138$ Регрессионная модель зависимости ЧП и ОКД банка может быть записана в виде линейного уравнения

регрессии:

$$\hat{y} = 12,138 + 0,991x$$

Расчётные значения ЧП, найденные по этому уравнению, приведены в Таблице 2, графа 7.

Правильность расчёта параметров уравнения регрессии может быть проверена сравнением сумм $\sum y = \sum \hat{y}$. В данном случае эти суммы равны (см. Таблица 2, графа 8).

Таблина 2

Год	ОКД (млрд руб.)	ОКД (млрд руб.)	x^2	y ²	ху	ŷ	$y - \hat{y}$	$(y-\hat{y})^2$	<i>y</i> – <i>y</i>	$(y-y)^2$	$\hat{y} - y$	$(\hat{y} - y)^2$
2006	16	31,2	256	973,44	499,2	28,00	3,20	10,27	-20,68	427,66	-23,88	570,48
2007	22,1	33,7	488,41	1135,69	744,77	34,00	-0,34	0,12	-18-18	330,51	-17,84	318,24
2008	34,7	43,7	1204,09	1909,69	1516,39	43,53	-2,83	8,00	-8,18	66,91	-5,35	28,64
2009	54,2	62,9	2937,64	3956,41	3409,18	65,85	-2,95	8,73	11,02	121,44	13,97	195,27
2010	73,5	87,9	5402,25	7726,41	6460,65	84,98	2,92	8,52	36,02	1297,44	33,10	1095,71
Сумма	201	259,4	10288,39	15701,6	12630,19	259,4	0	35,63	0,00	2243,97	0,00	2208,34
Среднее	40,10	51,80	2057,68	3140,33	2526,04							

Как известно, регрессионная модель, полученная по данным сравнительно небольшой статистической совокупности, может существенно искажаться действием случайных факторов, что определяет необходимость оценки адекватности модели, которая заключается в расчёте следующих статистик (Таблица 2).

Проверим точность построения модели ЧП с помощью депрессионного анализа:

- общая девиация: $Q = \sum (y_i y)^2 = 2243,97$, где $\overline{y} = \frac{1}{n} \sum y$;
- общая выборочная дисперсия: $S^2 = \frac{\sum (y_i \overline{y})^2}{n-1} = 560,99$, где n число выборки;
- девиация регрессии: $Q_R = \sum (y_i y)^2 = 2207,91$;
- $S_R^2 = \frac{\sum (y_i \overline{y})^2}{m-1} = 1103,96$, где m число коэффициентов в уравнении регрессии +1, m=3; остаточная девиация: $Q_R = \sum (y_i y)^2 = \sum \varepsilon_i^2 = 35,63$;
- выборочная остаточная дисперсия: $S_{ocm}^2 = \frac{\sum \varepsilon_i^2}{n-m} = 17,815$.

Критерием правильности проводимых расчётов является выполнение условия: $Q = Q_{R} + Q_{ocm}$; в нашем случае данное условие выполняется. Чем больше $Q_{\scriptscriptstyle R}$ и меньше $Q_{\scriptscriptstyle ocm}$, тем меньше разброс относительно среднего, и тем больше коэффициент детерминации.

Вычислим коэффициент детерминации, указывающий на силу связи между ОКД и ЧП, независимо от единиц измерения:

$$R^2 = \frac{Q_R}{Q} = 0,984$$
, т.е. 98,4% ЧП банка обусловлено ОКД.

Вычислим меру неопределённости регрессии, которая показывает силу воздействия случайных величин:

$$H^2 = \frac{Q_{ocm}}{Q} = 0,16$$
, т.е. 1,6% общей вариации ЧП нельзя объяснить ОКД.

Необходимо выполнение условия: $R^2 + H^2 = 1$. В нашем случае: 0,984 + 0,016 = 1, чем больше R^2 , тем лучше выбранная функция аппроксимирует фактические данные.

Найдём значение линейного коэффициента корреляции R и проверим его значимость при помощи F - критерия Фишера-Снедекора:

 $R = \sqrt{R^2} = 0,992$, т.е. связь между ЧП и ОКД весьма тесная. Пусть H_0 - гипотеза о том, что теснота связи, выраженная значением линейного коэффициента корреляции, в данном случае применима.

 H_1 - обратная гипотеза.

Если $F_{\it pacu} > F_{\it madn}$, то подтверждается гипотеза H_0 .

Если $F_{pacy} < F_{mator}$, то подтверждается гипотеза.

Т.к.
$$F_{k_1k_2a} = F_{ma\delta\pi} = 19,0$$
, $F_{pacu} = \frac{S_R^2}{S_{ocm}^2} = 61,95$, то подтверждается гипотеза H_0 и значение коэффициента

 $R = 0,992\,$ признается значением с доверительной вероятностью F = 1 - a = 0,95 .

Для оценки качества подбора функции регрессии сравниваем значения S_{ocm}^2 и S^2 . В нашем случае, так как выполняется условие, то, следовательно, полученная модель адекватна.

Значимость коэффициентов уравнения регрессии a_0, a_1 определяли по t - критерию Стьюдента.

Допустим, что H_2 - гипотеза о том, что каждый из этих параметров оказался равным проверяемой величине лишь в силу случайных обстоятельств H_3 : обратная гипотеза - оба параметра признаются значимыми.

Если $t_{a_1} < t_{maб\pi}$ и/или $t_{a_0} < t_{maб\pi}$, то подтверждается гипотеза.

Если $t_{a_1} > t_{ma \delta n}$ и , то подтверждается гипотеза.

Т.к. a = 0.05, число степеней $\mathcal{G} = n - 2 = 3$. Находим:

$$S_{a_1} = \frac{S_{ocm}}{\sqrt{\sum (x_1 - \bar{x})}} = 0,0889$$

$$t_{a_1} = \frac{a_1}{S_{a_1}} = 11,14$$

$$S_{a_0} = \frac{S_{ocm}}{\sqrt{n}} = 1,878$$
 $t_{a_0} = \frac{a_0}{S_{a_0}} = 6,46$

В нашем случае $t_{9a} = t_{ma\delta n} = 2,353363$. Т.к. и , то оба параметра признаются значимыми, и отклоняется гипотеза.

Таким образом, используя регрессионную модель $\hat{y} = 12,138 + 0,199x$, можно прогнозировать появление зависимой случайной величины ЧП. Так как процесс подвержен случайным воздействиям, то прогноз может быть сделан лишь в виде доверительного интервала. Среднее значение прогноза - линия регрессии. Пусть нас интересует значение ЧП в точке x_h . Тогда границы доверительного интервала:

$$y_{s.n.} = \hat{y} \pm t_a S_h = \hat{y}_h \pm \Delta y_{oos}$$

$$S_h^2 = S_{ocm}^2 \left(1 + \frac{1}{n} + \frac{\left(x_h - \overline{x} \right)^2}{\sum \left(x_i - \overline{x} \right)^2} \right)$$

$$S_{ocm}^2 = \frac{\sum (y_i - \hat{y}_i)^2}{n - 2}$$

При удалении координаты x от вектора \bar{x} , и при увеличении доверительной вероятности - доверительный интервал увеличивается.

Таким образом, на основе проведенных исследований можно сделать вывод, что зависимость между ОКД и ЧП очень велика. Коэффициент детерминации, показывающий связь между данными величинами, доказал это предположение; по результатам расчета он оказался равен 98,4%, т.е. 98% прибыли банка обусловлено ОКЛ

Используя проведенные в данной работе расчеты, можно с достаточно большой точностью прогнозировать прибыль банковской организации. И на основе полученных данных модернизировать, перестраивать кампанию, оперативно реагировать на меняющиеся экономические условия. А это - залог успешного будущего любого предприятия.

Список литературы

- 1. Гмурман В. Е. Теория вероятностей и математическая статистика: учеб. пособие для вузов. Изд. 7-е, стер. М.: Высш. шк.. 2000. 479 с.
- 2. Деньги, кредит, банки: экспресс-курс: учебное пособие / колл. авт.; под ред. засл. деят. науки РФ, д-ра экон. наук, проф. О. И. Лаврушина. 4-е изд., стер. М.: КНОРУС, 2010. 320 с
- 3. Экономическая теория / под ред. А. И. Добрынина, Л. С. Тарасевича. 3-е изд. СПб.: Изд. СПбГУЭФ; Питер, 2008. 544 с.

УДК 311:33(06)

Экономические науки

Ирина Валентиновна Бреславцева, Михаил Михайлович Афанасьев Шахтинский институт (филиал) Южно-Российского государственного технического университета (Новочеркасского политехнического института)

ИССЛЕДОВАНИЯ ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ МЕТОДАМИ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ $^{\circ}$

Статистическая наука сложилась в результате теоретических обобщений накопленных человечеством опыта учетно-расчетных работ, обусловленных потребностями управления обществом. Основой для разработки и применения статистической методологии (совокупности методов и приемов) является диалектический метод познания, когда общественные явления и процессы рассматриваются в развитии, взаимной связи и причинной обусловленности. Многообразие статистических методов обусловлено сложностью объекта и сложностью и многоэтапностью - трех стадий исследования экономических явлений:

- сбор первичной информации метод массового статистического наблюдения, обеспечивающий репрезентативность информации;
- сводка, группировка, обработка первичной информации метод статистических группировок математической статистики и теории вероятности;
- обобщение и интерпретация статистической информации метод обобщения и анализа на основе показателей абсолютных относительных и средних величин, вариаций динамики, индексов.

На всех стадиях применяются графические, табличные и математические методы.

Проведем исследование одной из основных задач статистики, в современных условиях - исследование происходящих в обществе преобразований экономических процессов на основе системы специальных показателей, на примере работы ассоциации коммерческих банков.

Банк можно определить как кредитную организацию, которая имеет исключительное право осуществлять в совокупности, следующие банковские операции: привлечение во вклады денежных средств физических и юридических лиц, размещение указанных средств от своего имени и за свой счет на условиях возвратности, платности, срочности, открытие и ведение банковских счетов физических и юридических лиц.

Под банковской системой же понимают совокупность различных видов национальных банков и кредитных учреждений, действующих в рамках общего денежно-кредитного механизма. Включает Центральный банк, сеть коммерческих банков и других кредитно-расчетных центров. Центральный банк проводит государственную эмиссионную и валютную политику, является ядром резервной системы. Коммерческие банки осуществляют все виды банковских операций.

В странах с развитой рыночной экономикой сложились двухуровневые банковские системы. Верхний уровень системы представлен центральным (эмиссионным) банком. На нижнем уровне действуют коммерческие банки, подразделяющиеся на универсальные и специализированные банки (инвестиционные банки, сберегательные банки, ипотечные банки, банки потребительского кредита, отраслевые банки, внутрипроизводственные банки), и небанковские кредитно-финансовые институты (инвестиционные компании, инвестиционные фонды, страховые компании, пенсионные фонды, ломбарды, трастовые компании).

Банковская система включает элементы, подчиненные определенному единству, отвечающие единым целям, что можно отнести к ее признакам. Она имеет специфические свойства и способна к взаимозаменяемости элементов.

Банки, как элементы банковской системы, могут успешно развиваться только во взаимодействии с другими элементами и, прежде всего, с банковской инфраструктурой. К элементам банковской инфраструктуры относятся: законодательные нормы, внутренние правила совершения операций, структура аппарата управления банком. Показатели эффективности работы ассоциации зависят от эффективности работы персонала, количества обслуженных клиентов, времени обслуживания и т.п.

Используя данные о чистой прибыли данной ассоциации и каждого отдельно взятого банка (Табл. 1), проведем анализ работы объединения и выясним, как влияет развитая сеть филиалов на работу организации.

_

[©] Бреславцева И. В., Афанасьев М. М., 2012