Торшин Владимир Викторович <u>О РАСЧЕТЕ ЭЛЕКТРОМАГНИТОВ УДАРНОГО ДЕЙСТВИЯ</u> Адрес статьи: www.gramota.net/materials/1/2011/7/17.html

Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по рассматриваемому вопросу.

Источник

Альманах современной науки и образования Тамбов: Грамота, 2011. № 7 (50). С. 72-76. ISSN 1993-5552. Адрес журнала: www.gramota.net/editions/1.html Содержание данного номера журнала: www.gramota.net/materials/1/2011/7/

© Издательство "Грамота"

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: <u>www.gramota.net</u> Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: <u>almanac@gramota.net</u>

УДК 621.318.3

Владимир Викторович Торшин Институт проблем управления РАН им. В. А. Трапезникова

О РАСЧЕТЕ ЭЛЕКТРОМАГНИТОВ УДАРНОГО ДЕЙСТВИЯ[©]

Рассмотрим практический расчет конструкции электромагнитов, использующую силу отталкивания. Приведем расчет динамических параметров, т.е. определим расстояние, на которое переместится объект, а также время движения, скорости и ускорения якорей электромагнитов и объекта. Пример такой конструкции приведен на Рис. 1.

Рис. 1. Электромагнитный ударный механизм: 1 - якорь первого электромагнита; 2 - обмотка возбуждения; 3 - магнитопровод; 4 - якорь второго электромагнита; 5 - объект

На Рис. 1 показан якорь 1 первого электромагнита, который имеет рабочий зазор Δ . После срабатывания шток якоря первого электромагнита, ударяется в якорь 4 второго электромагнита, который в свою очередь воздействует на объект 5 и тем самым перемещает его на некоторое расстояние. Заметим, что рабочий зазор второго электромагнита также составляет Δ , однако в действительности, первоначально зазор якоря второго электромагнита устанавливается больше Δ .

Так, на Рис. 1 этот зазор равен 4 Δ . Таким образом, расстояние, которое преодолеет якорь второго электромагнита до попадания в свою рабочую зону (равную Δ) равно 3 Δ . Естественно, что это расстояние может быть и большим, чем 4 Δ , поскольку оно целиком определяется только силой удара якоря первого электромагнита и силой сопротивления объекта 5. После удара штока первого якоря, эту дистанцию якорь 4 пройдет по инерции, приобретя начальную скорость v_0 перед входом в свою рабочую зону, равную Δ . Движение якоря второго электромагнита передастся объекту 5, еще больше ускоряя его.

Магнитопроводы первого и второго электромагнитов представляют собой полые цилиндры, внутри которых располагается кольцевая обмотка возбуждения 2. Направление магнитных потоков Φ_1 и Φ_2 на Рис. 1 условно показано стрелками. Особенность расчета динамических параметров для схемы, показанной на Рис. 1, заключается в том, что сила притяжения первого электромагнита зависит от величины воздушного зазора. Чем меньше становится зазор, тем сила притяжения больше, причем в этом случае зависимость будет носить *гиперболический* характер. Конечной целью расчета является определение расстояния, на которое переместится объект после удара штока второго электромагнита.

На первый взгляд максимального расстояния, на которое переместится объект, можно достигнуть в том случае, когда у обоих электромагнитов рабочие зазоры равны и их суммарная мощность удваивается, однако это не так. Эксперименты показывают, что максимальное расстояние, на которое перемещается объект, достигается тогда, когда зазор между *штоком* первого электромагнита и *якорем* второго электромагнита равен нулю, а свободный пробег якоря второго электромагнита за счет силы инерции составляет 4-5 Δ .

Вначале определим электрические параметры первого электромагнита, для этого зададимся начальными условиями. Воздушный зазор по мере приближения якоря к ярму (магнитопроводу), уменьшается, а сила притяжения электромагнита наоборот увеличивается. Кроме того, по мере приближения к магнитопроводу,

[©] Торшин В. В., 2011

меняется магнитный поток в зазоре, и, как следствие, величина магнитной индукции. Поэтому, прежде чем вычислить электромагнитную силу притяжения, необходимо знать зависимость изменения магнитного потока и магнитной индукции от величины воздушного зазора.

Магнитный поток может быть подсчитан по формуле [1].

$$\Phi = (Iw)_k \cdot G_\Delta = (Iw)_k \cdot \frac{0 \cdot S}{\Delta}, B\delta$$
⁽¹⁾

где G_{Δ} - магнитная проводимость воздушных зазоров, ΓH , S - площадь магнитопровода, участвующая в проведении магнитного потока в воздушном зазоре Δ , I - ток в обмотке возбуждения электромагнита, w - число витков обмотки возбуждения электромагнита.

Значение магнитной индукции можно рассчитать по формуле [Там же]:

$$B = \frac{\Phi}{S}, T\pi$$
⁽²⁾

Окончательно величина электромагнитной силы притяжения может быть подсчитана как:

$$F_{\mathcal{F}} = \frac{B^2 \cdot S}{2_0}, H \tag{3}$$

где $_{0}$ - магнитная проницаемость воздушной среды, $_{0} = 1,256 \cdot 10^{-6}$.

Для примера практического расчета зададимся начальными условиями. Пусть внешний диаметр магнитопровода равен $D_{\Im} = 12 \cdot 10^{-2} \, m$, внутренний диаметр магнитопровода $d_{\Im} = 10 \cdot 10^{-2} \, m$. Внутренний диаметр катушки возбуждения равен диаметру внутренней части магнитопровода, т.е. $d_{Ks} = 6 \cdot 10^{-2} \, m$. Число витков обмотки возбуждения равно $w_k = 1000$, а ток в цепи обмотки составляет $I_k = 5A$. Воздушный зазор Δ между якорем и магнитопроводом может изменяться в диапазоне от 1 мм до 2 см. Масса якоря обоих электромагнитов составляет $m_a = 0,15kg$. Предположим, что объект представляет собой груз весом $P_0 = 50N$, размещенный на платформе, которая передвигается по рельсам на колесах. Радиус колес платформы составляет $r_k = 1,5 \cdot 10^{-3} \, m$. Масса платформы равна $m_p = 0,4kg$.

Для расчета параметров воспользуемся математической программой *MathCAD* [2]. Вначале подсчитаем активную площадь якоря для проведения магнитного потока. Эта площадь складывается из торцевой внутренней площади магнитопровода и торцевой площади стенки цилиндра магнитопровода. Таким образом, можно записать:

$$S = \frac{\cdot d_{K_{\theta}}^{2}}{4} + \frac{1}{4} \cdot \left(D_{\mathfrak{I}}^{2} - d_{\mathfrak{I}}^{2} \right)$$
(4)

При заданных параметрах эта площадь будет равна: S=6.283x10⁻³m²

Представим, что величина воздушного зазора меняется в заданном диапазоне с шагом 1 мм, т.е.

 $\Delta_{\rm f} := 0.1 \times 10^{-2} m, \ 0.2 \times 10^{-2} m.. \ 2 \times 10^{-2} m$

Для практических расчетов составим матрицу Δ для значений воздушного зазора. Используя эту матрицу и формулы (1)-(3), получим следующие значения параметров:

$\Delta_i =$											
1.10-3	m	1×10^{-3}			0			0			0
2.10-3		2×10^{-3}		0	0.039		0	6.283		0	9.87·10 ⁴
3.10-3		3×10^{-3}		1	0.02		1	3.142		1	2.467 [.] 10 ⁴
4.10-3		4×10^{-3}		2	0.013		2	2.094		2	1.097·10 ⁴
5.10-3		6×10^{-3}		3	9.87·10 ⁻³		3	1.571		3	6.169 [.] 10 ³
6.10-3		7×10^{-3}		4	7.896·10 ⁻³		4	1.257		4	3.948 [.] 10 ³
7.10-3		8×10^{-3}	Φ=	5	6.58 [.] 10 ⁻³	Wh B =	5	1.047	T F=	5	2.742·10 ³
8·10 ⁻³	$\Delta :=$	9×10^{-3}	·m	6	5.64·10 ⁻³	NO D -	6	0.898	1 1 -	6	2.014·10 ³
9·10 ⁻³		0.01		7	4.935 [.] 10 ⁻³		7	0.785		7	1.542 [.] 10 ³
0.01		0.012		8	4.386 [.] 10 ⁻³		8	0.698		8	1.218 [.] 10 ³
0.011		0.013		9	3.948·10 ⁻³		9	0.628		9	986.96
0.012		0.015 0.016		10	3.589·10 ⁻³		10	0.571		10	815.67
0.013		0.017		11	3.29·10 ⁻³		11	0.524		11	685.389
		0.018 0.019		12			12			12	
		0.02	J								

Естественно, табличные значения приводятся не полностью в виду ограниченности объема статьи.

Чтобы вычислить ускорения, которые будет испытывать якорь первого электромагнита без учета разгона якоря второго электромагнита и объекта, воспользуемся известной формулой Ньютона. Итак, поскольку $F = m_i \cdot a(\Delta)$, то без учета сил трения ускорение можно вычислить по формуле:

$$a(\Delta) = \frac{F}{m_i} \tag{5}$$

где *m*_i - масса якоря.

Расчетные значения ускорений первого электромагнита с учетом шага изменения зазора, сведены в таблицу (Рис. 2). На основании полученных значений на Рис. 2 показан график изменения величины ускорения в зависимости от величины воздушного зазора.

Рис. 2. Таблица и график изменения величины ускорения в рабочем зазоре первого электромагнита

С учетом массы якоря второго электромагнита и веса объекта зависимость величины ускорения от величины рабочего зазора будет выглядеть несколько иначе. В этом случае приходится учитывать инерционную составляющую якоря второго электромагнита. Ускорение, которое развивает якорь первого электромагнита с учетом массы якоря второго электромагнита и массы объекта, можно подсчитать по следующей формуле:

$$a(\Delta) = \frac{F}{2 \cdot m_j + \frac{P_0}{g}},\tag{6}$$

где P_0 - вес объекта; *g* - ускорение силы тяжести.

Расчетные значения ускорений первого электромагнита с учетом шага изменения зазора, массы якоря второго электромагнита и веса объекта, сведены в таблицу (Рис. 3). По полученным значениям на Рис. 3 приведен график изменения величины ускорения в зависимости от величины воздушного зазора.

Представленный график подобен графику, изображенному на Рис. 2. Заметим, что полученные значения ускорений сведены в матрицу «А», а каждый член матрицы представляет собой ускорение в конце выбранного шага.

Итак, сделав предварительные замечания и расчеты, можно приступить к вычислению основных динамических параметров: времени движения якорей электромагнитов и объекта, скорости, дистанции которую преодолеет объект после срабатывания электромагнитов. Путь, пройденный любым телом можно вычислить по известной формуле:

$$S = v \cdot t + \frac{a \cdot t^2}{2},\tag{7}$$

где v - скорость тела, a - ускорение, t - время в пути.

Наша задача осложняется тем обстоятельством, что при прохождении якорем воздушного рабочего зазора с заданным шагом 1 мм, изменяется величина силы тяги электромагнита (она увеличивается), и, следовательно, ускорение. Поэтому в качестве пути *S* необходимо выбрать величину этого шага. Исходя из этого, можно подсчитать время прохождения шага *t*, решив уравнение (7) относительно *t*.

$$t = \frac{2 \cdot \left(\frac{\sqrt{v_0^2 + 2 \cdot S \cdot a}}{2} - \frac{v_0^2}{2}\right)}{a}$$
(8)

Соответственно этому времени будет изменяться и скорость в конце шага пути равному 1 мм. Тогда можно записать выражение для скорости в следующем виде:

$$v = v_0 + at,$$

(9)

где v - скорость в конце прохождения шага, v_0 - скорость в начале шага, t - время прохождения шага.

Рис. 3. Таблица и график изменения величины ускорения в рабочем зазоре первого электромагнита с учетом массы якоря второго электромагнита и массы объекта

В соответствие с формулами (7)-(9), и значениями ускорений, приведенными на Рис. 3, ниже приводятся данные расчета скорости и времени прохождения воздушного рабочего зазора якорем первого электромагнита. В первоначальный момент, когда якоря первого и второго электромагнитов вместе с объектом находятся в неподвижном состоянии, выражение для времени прохождения якоря первого нулевого шага S (напомним, что все шаги равнозначны и составляют $1 \times 10^{-3} m$) и скорости в конце первого шага, приобретают вид:

$$S_{w} := 1 \times 10^{-3} \text{ m}$$
 $t_{0} := \sqrt{\frac{2 \cdot S}{A_{19}}}$ $t_{0} = 6.615 \times 10^{-3} \text{ s}$ $v_{0} := A_{19} \cdot t_{0}$ $v_{0} = 0.302 \frac{\text{m}}{\text{s}}$

На следующем этапе скорость будет определяться по формуле (9). В этом случае выражения для времени и скорости будут выглядеть следующим образом:

$$t_1 := \frac{2 \cdot \left(\frac{\sqrt{v_0^2 + 2 \cdot S \cdot A_{18}}}{2} - \frac{v_0}{2}\right)}{A_{18}} \qquad t_1 = 2.698 \times 10^{-3} \text{ s} \qquad v_1 := v_0 + A_{18} \cdot t_1 \qquad v_1 = 0.439 \frac{\text{m}}{\text{s}}$$

Расчетные данные для последующих шагов сведены в матрицы для времени и скорости. Ввиду ограниченности пространства, данные расчета, приводятся не полностью.

 $\mathbf{t}_{\mathcal{M}} := \begin{pmatrix} \mathbf{t}_0 & \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 & \mathbf{t}_4 & \mathbf{t}_5 & \mathbf{t}_6 & \mathbf{t}_7 & \mathbf{t}_8 & \mathbf{t}_9 & \mathbf{t}_{10} & \mathbf{t}_{11} & \mathbf{t}_{12} & \mathbf{t}_{13} & \mathbf{t}_{14} & \mathbf{t}_{15} & \mathbf{t}_{16} & \mathbf{t}_{17} & \mathbf{t}_{18} & \mathbf{t}_{19} \end{pmatrix}$

t =		0	1	2	3	4	s (10
c	0	6.615 [.] 10 ⁻³	2.698·10 ⁻³	2.017·10 ⁻³	1.653 [.] 10 ⁻³		

$$\mathbf{v} := \begin{pmatrix} v_{19} & v_{18} & v_{17} & v_{16} & v_{15} & v_{14} & v_{13} & v_{12} & v_{11} & v_{10} & v_{9} & v_{8} & v_{7} & v_{6} & v_{5} & v_{4} & v_{3} & v_{2} & v_{1} & v_{0} \end{pmatrix}$$

v =		0	1	2	3	4	5	6	7	<u>m</u>	(11)
	0	7.639	4.669	3.558	2.932	2.512	2.201	1.957		s	× ,

Общее время прохождения якоря первого электромагнита рабочего зазора можно подсчитать суммирую члены таблицы (10).

 $t := t_0 + t_1 + t_2 + t_3 + t_4 + t_5 + t_6 + t_7 + t_8 + t_9 + t_{10} + t_{11} + t_{12} + t_{13} + t_{14} + t_{15} + t_{16} + t_{17} + t_{18} + t_{19} + t_{19} + t_{10} +$

По полученным расчетным параметрам можно построить график изменения скорости якоря первого электромагнита в воздушном рабочем зазоре (Рис. 4). Поскольку матрица изменения шага воздушного зазора Δ является вертикальной матрицей, то для построения зависимости скорости от величины зазора необходимо транспонировать матрицу скорости (11).

Рис. 4. Зависимость скорости движения якоря первого электромагнита в рабочем зазоре

Итак, в конце пути (прохождения якоря первого электромагнита своего рабочего зазора), якорь *второго* электромагнита вместе с *объектом* приобретут начальную скорость $v = 7,639 \frac{m}{s}$. Последующее движение якоря второго электромагнита будет проходить по инерции до попадания в свою рабочую зону для даль-

нейшего разгона объекта. На этом этапе скорость движения будет равномерно падать вследствие торможения силами трения якоря и объекта. Но в виду незначительной силы трения скорость в начальной точке ра-

бочей зоны второго электромагнита составит $v = 7,629 \frac{m}{s}$. Более подробно о расчете этой скорости и других

динамических параметров электромагнитов ударного действия можно ознакомиться в литературе [3].

Таким образом, якорь второго электромагнита начнет движение не с точки, когда скорость равна нулю, и необходимо преодолеть начальное сопротивление неподвижного объекта, а тогда, когда якорь и объект приобретут уже определенную скорость. Расчеты показывают, какие расстояния пройдет объект при разных схемах включения электромагнитов. К сожалению, в этой статье привести их не представляется возможным, однако некоторые результаты мы все-таки представим.

Если сравнивать расстояние, на которое перемещается объект, то в случае наличия инерционной составляющей расстояние на которое переместится объект, составит 60,281 m. В том случае, когда первоначальные рабочие зазоры у обоих электромагнитов одинаковые и равны Δ , действие двух электромагнитов переместит объект на 49,097 m. Если будет задействован только *один* электромагнит, то дистанция, которую преодолеет объект, составит всего 29,756 m [Там же]. Такие результаты расчетов хорошо согласуются с реальными экспериментами с моделями электромагнитов ударного действия [4].

Список литературы

- 1. Буль Б. К., Буткевич Г. В. и др. Основы теории электрических аппаратов. М.: Высшая школа, 1970. С. 600.
- 2. Макаров Е. Г. Инженерные расчеты в MathCad 14. СПб.: Питер, 2007. 592 с.
- 3. Торшин В. В., Пащенко Ф. Ф., Круковский Л. Е. Электрические машины и аппараты на основе логического анализа законов электродинамики. М.: БЕЛЫЙ БЕРЕГ, 2010. С. 264.
- 4. Торшин В. В., Старовойтов В. П. О расширении диапазона действия электромагнитов // Альманах современной науки и образования. Тамбов: Грамота, 2010. № 6 (37). С. 46-50.