Алтухов Юрий Александрович, Кисляк Сергей Марксинович, Аль Замили Али Мирали Джасим <u>ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТУРБУЛЕНТНОГО ТЕЧЕНИЯ ЗАПЫЛЕННОГО ПОТОКА В</u> <u>ЦЕНТРОБЕЖНОМ ЗОЛОУЛОВИТЕЛЕ</u>

Адрес статьи: <u>www.gramota.net/materials/1/2011/10/14.html</u> Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по рассматриваемому вопросу.

Источник

Альманах современной науки и образования Тамбов: Грамота, 2011. № 10 (53). С. 38-41. ISSN 1993-5552. Адрес журнала: <u>www.gramota.net/editions/1.html</u> Содержание данного номера журнала: <u>www.gramota.net/materials/1/2011/10/</u>

<u>© Издательство "Грамота"</u>

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: <u>www.gramota.net</u> Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: <u>almanac@gramota.net</u>

МАТЕМАТИКА, ФИЗИКА, СТРОИТЕЛЬСТВО, АРХИТЕКТУРА, ТЕХНИЧЕСКИЕ НАУКИ

УДК 621.928.9(035)

Юрий Александрович Алтухов Алтайская государственная педагогическая академия

Сергей Марксинович Кисляк, Аль Замили Али Мирали Джасим Алтайский государственный технический университет

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТУРБУЛЕНТНОГО ТЕЧЕНИЯ ЗАПЫЛЕННОГО ПОТОКА В ЦЕНТРОБЕЖНОМ ЗОЛОУЛОВИТЕЛЕ $^{\odot}$

В статье проводится вычислительная гидродинамика (CFD) и экспериментальный анализ, чтобы вычислить и изучить запыленный поток в модели центробежного золоуловителя (ЦЗУ) при трехмерной турбулентности.

Уравнения Навье-Стокса, осредненные по Рейнольдсу и замкнутые RNG k- моделью турбулентности, использовались, чтобы описывать поток в ЦЗУ. Модель Лагранжа использована для описания движения частиц в ЦЗУ. Метод контрольного объема и SIMPLE алгоритм использовались, чтобы решить трехмерные уравнения Навье-Стокса. Схема Рунге-Кутта использовалась, чтобы решить уравнения движения частиц в ЦЗУ.

Показано, что методика исследования процессов сепарации частиц в золоуловителях может использоваться для разных золоуловителей после соответствующего выбора модели турбулентности, связанной с особенностями течения сильно закрученных турбулентных потоков.

По прогнозам министерства природных ресурсов РФ с 2030 г. первенство в топливно-энергетическом балансе в России займут уголь и атомная энергетика, что потребует конструктивного и технологического совершенствования золоочистного оборудования. В котельной технике для очистки газа от твердых частиц в основном используются центробежные и инерционные золоуловители. Технические, экономические или технологические разработки, направленные на повышение эффективности таких золоуловителей, невозможны без изучения гидродинамических особенностей процесса осаждения частиц и их движения в несущем газовом потоке. Создание математической модели движения аэрозольной частицы в турбулентном потоке позволяет оценить эффективность золоулавливания и выявить влияющие на нее факторы. В последнее время выполнено много экспериментальных и теоретических исследований для разработки индустриальных установок, применяемых для очистки запыленных потоков [2-4]. Цель настоящего исследования - изучить аэродинамику запыленного потока через золоуловитель и определить эффективность и коэффициент сопротивления улавливания в ЦЗУ при разных контрактурах (разные высоты выхлопных труб и закручивателей).

Модель прямоточного центробежного золоуловителя показана на Рис. 1 [2]. Корпус уловителя 1 имел сечение 300×600 мм, высоту - 600 мм. К верхней части корпуса уловителя, имеющей входное окно 184×200 мм, крепился горизонтальный входной участок 2, выполняющий роль тангенциального входа. Для улучшения аэродинамики потока и повышения эффективности сепарации частиц внутри корпуса вокруг выхлопных труб устанавливались «закручиватели» потока (Рис. 2) в виде направляющих пластин. Длина дуги пластин L≈130 мм. Закручиватели потока крепились в нескольких точках к корпусу уловителя.

Рис. 2. Вид внутри ЦЗУ (закручиватели и выхлопные трубы)

В работе изучены разные конструкции: без закручивателей (Рис. 3); с разными высотами закручивателей (Рис. 4), что позволило исследовать влияние высоты закручивателей на эффективность золоулавливания ЦЗУ.

Основой теоретического исследования являлись уравнения Навье-Стокса в трехмерным случае, осредненные по Рейнольдсу [5]:

[©] Алтухов Ю. А., Кисляк С. М., Аль Замили Али Мирали Джасим, 2011

$$\sum_{j=1}^{3} \frac{\partial \overline{u}_{j}}{\partial x_{j}} = 0, \ \frac{\partial}{\partial t}(\overline{u}_{i}) + \sum_{j=1}^{3} \frac{\partial}{\partial x_{j}}(\overline{u}_{j}\overline{u}_{i}) = -\frac{1}{2} \frac{\partial \overline{p}}{\partial x_{i}} + \sum_{j=1}^{3} \frac{1}{2} \frac{\partial}{\partial x_{j}}(\left(\frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial \overline{u}_{j}}{\partial x_{i}}\right) - \overline{u_{i}''u_{j}''})$$
(1)

где t - время; x_i - декартова координата i=1,2,3; u_i - компонента скорости жидкости в направлении x_i; p -давление; p -плотность (= p / RT), где R -универсальная газовая постоянная, T - температура.

Модель RNG k- использована для описания турбулентности течения, которая имеет вид [6]:

$$\frac{\partial}{\partial t}(k) + \frac{\partial}{\partial x_{j}}\left(\overline{u}_{j}k - (k + \frac{-k}{k})\frac{\partial k}{\partial x_{j}}\right) = \frac{1}{k}(P + P_{B}) - \frac{2}{3}\left(\frac{\partial u_{i}}{\partial x_{i}} + k\right)\frac{\partial u_{i}}{\partial x_{i}}$$

$$\frac{\partial}{\partial t}(k) + \frac{\partial}{\partial x_{j}}\left(\overline{u}_{j}k - (k + \frac{-k}{k})\frac{\partial u_{j}}{\partial x_{j}}\right) = \begin{bmatrix} C_{1}\frac{1}{k}\left[\frac{1}{k}P - \frac{2}{3}\left(\frac{\partial u_{i}}{\partial x_{i}} + k\right)\frac{\partial u_{i}}{\partial x_{i}}\right] + C_{3}\frac{1}{k}P_{B} \\ -C_{2}\frac{2}{k} + C_{4}\frac{\partial u_{i}}{\partial x_{i}} - \frac{C_{3}(1 - \frac{1}{k}-\frac{1}{k})\frac{2}{k}}{1 + \frac{3}{k}} \end{bmatrix}$$

$$(2)$$

где $_{t} = C = k^{2} / , \sigma$ - турбулентное число Прандтля; С ₁, С ₂, С ₃ и С ₄ - коэффициенты, значения которых приведены в ссылке [Ibidem].

Движение частиц, взвешенных в турбулентном потоке газа, может описываться в рамках стохастического лагранжевого подхода. При этом уравнение сохранения для движения частиц в турбулентном газовом потоке имеет вид [1]:

$$m_p \frac{d\vec{u}_p}{dt} = \vec{F}_{pr} + \vec{F}_p + \vec{F}_{am} + \vec{F}_b \tag{4}$$

где $\vec{F}_{pr} = \frac{1}{2}C_D$ $A_p \left| \vec{u} - \vec{u}_p \right| (\vec{u} - \vec{u}_p)$; C_D - коэффициент сопротивления частицы в случае несжимаемого по-

тока является функцией числа Рейнольдса [Там же]: $C_D = \begin{cases} 24/\operatorname{Re}_p & \operatorname{Re}_p \leq 1\\ 24(1+0.15\operatorname{Re}_p^{0.687})/\operatorname{Re}_p & 1<\operatorname{Re}_p \leq 10^3\\ 0.44 & \operatorname{Re}_p > 10^3 \end{cases}$

$$\operatorname{Re}_{p} = \frac{d_{p} \left| u - u_{p} \right|}{d_{p} u_{p}}$$
 - диаметр и скорость частицы, и - скорость газовой фазы; $\vec{F}_{p} = -V_{p} \nabla p V_{p}$ - объем час-

тиц; ∇p - градиент давления в жидкости; $\vec{F}_{am} = -C_{am} V_p \frac{d(\vec{u}_p - \vec{u})}{dt}$ C_{am} - const; $\vec{F}_{am} = m \left[a - \vec{v} \cdot \vec{v} + c \right] = 2(\vec{v} \cdot \vec{v})$ сила тажести гле a ускорение сили тажести \vec{v} ректор ускорей ско

 $\vec{F}_{b} = m_{p}[g - (x + r) - 2(x + u_{p})]$ - сила тяжести, где g - ускорение силы тяжести, \vec{r} - вектор угловой скорости, \mathbf{r} - расстояние до оси вращения.

Проведение вычислительного эксперимента в работе базируется на использовании метода контрольных объемов (F.V.) и SIMPLE-алгоритма (CD- adapco\STAR-CD 4.06). Система автоматизированного проектирования (CAD) - программа SolidWorks 2011 - использовалась для построения моделей конфигураций. Схема Рунге-Кутта 2-го порядка точности использовалась, чтобы решить уравнение движения частиц (4) в золоуловителе.

Эффективность улавливания дисперсного материала в эксперименте определялась весовым методом с помощью ситового анализа [2]: = $(M_{y_{\pi}}/M_0) \cdot 100\%$, где $M_{y_{\pi}}$ - масса уловленных частиц, M_0 - масса подаваемых на входе частиц.

Коэффициент сопротивления определяется по квадратичному закону [Там же]; $= 2\Delta p / (U_{cp}^2)$, где $U_{cp} = k_o U_o$, k_o - коэффициент неравномерности поля скоростей, U_{cp} - среднеарифметическая скорость по двум взаимно-перпендикулярным диаметрам сечения участка, а U_o - скорость в центре сечения. Для данного участка величина k₀ составила 0,947.

Для расчета турбулентных течений в исследуемых геометрических областях используются естественные граничные условия: на стенке - «закон стенки», мягкие граничные условия на выходе из канала и соответствующие условия для всех переменных на входе в канал. Для частиц использовался закон упругого соударения со стенками канала.

Одним из важных аспектов численного моделирования является сравнение результатов вычислений с данными эксперимента. Сравнения экспериментальных и рассчитанных скорости U_x при X=-90, Y=500 (Рис. 5) свидетельствуют о совпадении экспериментальных и теоретических результатов и об адекватности используемой теоретической модели.

Подробная картина полей скорости в характерных областях ЦЗУ (Рис. 6) качественно не противоречит ожидаемой картине течения и служит для расчета эффективности золоулавливания. На Рис. 7 показаны траектории частиц в ЦЗУ. Издательство «Грамота»

На Рис. 8 приведены зависимости эффективности ЦЗУ для разных высот закручивателей потока при разных выхлопных трубах. Из расчета следует, что эффективность ЦЗУ увеличивается с повышением высоты закручивателей и высоты выхлопных труб ЦЗУ. На Рис. 9 приведены значения коэффициента аэродинамического сопротивления для разных высот трубы (без закручивателей), с увеличением высот выхлопных труб сопротивление заметно возрастает, увеличением скорости потока значение с

уменьшается. Влияние закручивателей на аэродинамику уловителя (Рис. 10) проявилось также в повышении сопротивления из-за увеличения скорости вихревого движения. Эти результаты позволяют выбрать оптимальную конструкцию ЦЗУ.

Таким образом, в работе экспериментально и теоретически изучено влияние закручивателей потока и высоты выхлопных труб на аэродинамику, коэффициент сопротивления улавливания и эффективность улавливания частиц в ЦЗУ. Результаты подтверждают, что:

1. эффективность ЦЗУ повышается с увеличением высоты закручивателей и высоты выхлопных труб;

2. коэффициент аэродинамического сопротивления возрастает с увеличением заглубления выхлопных труб и с увеличением высоты закручивателей.

Примененная методика исследования процессов сепарации частиц в ЦЗУ показала свою работоспособность и может быть использована для аналогичных конструкций золоуловителей после соответствующего выбора модели турбулентности, связанной с особенностями течения запыленных потоков в извилистых каналах.

Рис. 3. ЦЗУ без закручивателей (высота труб 100 мм)

Рис. 4. ЦЗУ с 400 мм закручивателей (высота труб 100 мм)

Рис. 5. Сравнение скорости U_x при X=-90, Y=500 **Рис. 6.** Поля скорости ЦЗУ (высота труб 100 мм)

Рис. 7. Траектории частиц с 400 мм закручивателей (высота труб 300 мм)

Рис. 9. Коэффициент сопротивления улавливания (без закручивателей)

Рис. 8. Эффективность ЦЗУ для разных высот закручивателей

Рис. 10. Коэффициент сопротивления улавливания (с 600 мм закручивателей)

Список литературы

- 1. Вараксин А. Ю. Турбулентные течения газа с твердыми частицами. М.: ФИЗМАТЛИТ, 2003. 192 с.
- **2.** Кисляк С. М. Разработка уловителей и систем возврата уноса в котлах с низкотемпературным кипящим слоем: дисс. ... канд. тех. наук. Барнаул, 2004.
- **3.** Темникова Е. Ю. Исследование эффективности пылеулавливания в циклоне с рельефными поверхностями: автореф. дисс. ... канд. тех. наук. Кемерово, 2010.
- 4. Bhasker C. Flow Simulation in Industrial Cyclone Separator // Advances in Engineering Software. 2010. Vol. 41. P. 220-228.
- Warsi Z. V. A. Conservation Form of the Navier-Stokes Equations in General No Steady Coordinates // AIAA Journal. 1981. Vol. 19. P. 240-242.
- Yakhot V., Orszag S. A., Thangam S., Gatski T. B., Speziale Yakhot C. G. Development of Turbulence Models for Shear Flows by a Double Expansion Technique // Phys. Fluids. 1992. Vol. 7. P. 1510-1520.

УДК 629.113

Иван Федорович Дьяков Ульяновский государственный технический университет

ВЫБОР ПАРАМЕТРОВ ПОДВЕСКИ ТРАНСПОРТНЫХ СРЕДСТВ[©]

Плавность хода и нагрузочные режимы элементов подвески транспортных средств зависят от дорожных условий, скорости движения, неуравновешенности вращающихся масс и характеристики силовой установки

[©] Дьяков И. Ф., 2011