Тюлькина Е. Ю.

О ВЫЧИСЛЕНИИ ПОТОКА ТЕПЛА МЕЖДУ КОНЦЕНТРИЧЕСКИМИ СФЕРАМИ В **МОЛЕКУЛЯРНОМ ГАЗЕ**

Адрес статьи: www.gramota.net/materials/1/2008/7/74.html
Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по рассматриваемому вопросу.

Источник

Альманах современной науки и образования

Тамбов: Грамота, 2008. № 7 (14). С. 213-215. ISSN 1993-5552.

Адрес журнала: www.gramota.net/editions/1.html Содержание данного номера журнала: www.gramota.net/materials/1/2008/7/

© Издательство "Грамота"
Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: www.gramota.net Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: almanac@gramota.net

- 1. Торшин В. В. Логическая электродинамика (см. выше).
- 2. Юткин Л. А. Электрогидравлический эффект. М.-Л.: ГНТИ Машиностроительной литературы, 1955. С. 50.
- **3. Торшин В. В., Бусыгин Б. П., Пащенко Ф. Ф.** Логические методы в электродинамике. М.: ЦП ВАСИЗДАСТ, 2007. С. 352.

О ВЫЧИСЛЕНИИ ПОТОКА ТЕПЛА МЕЖДУ КОНЦЕНТРИЧЕСКИМИ СФЕРАМИ В МОЛЕКУЛЯРНОМ ГАЗЕ

Тюлькина Е. Ю.

ГОУ ВПО «Орловский государственный университет»

Проблема вычисления потока тепла между концентрическими сферами вызывает интерес, как с теоретической точки зрения, так и в плане практического приложения. Впервые математически корректное решение аналогичной задачи для атомарного газа приведено в [1]. Данная статья посвящена случаю молекулярного газа

Итак, рассмотрим слой газа, заключенный между двумя концентрическими сферами с радиусами $R_1 < R_2$, на поверхности которых поддерживается постоянная температура $T_s^1 > T_s^2$. Перепад температур $\Delta T_s = T_s^1 - T_s^2$ будем считать достаточно малым, чтобы линеаризовать задачу. Введем сферическую систему координат с началом в центре сфер. Следуя [4], для описания состояния газа примем уравнение Ван Чанга - Уленбека [5]:

$$\mathbf{V}\frac{\partial f_l}{\partial \mathbf{r}} = J_{st}[f_l] \tag{1}$$

Здесь ${f V}$ - тепловая скорость поступательного движения молекул газа, f_l - функция распределения, J_{st} - интегральный оператор столкновений.

В силу линейности поставленной задачи решение уравнения (1) представим в виде

$$f_l = f_l^0 (1 + \varphi_l)$$

где

$$f_{l}^{0} = n_{0} \left(\frac{m}{2\pi k T_{0}}\right)^{3/2} \frac{1}{\Theta} \exp\left(-C^{2} - \varepsilon_{l}\right),$$

$$\mathbf{C} = \mathbf{V} \sqrt{\frac{m}{2k T_{0}}} \quad \varepsilon_{l} = \frac{E_{i}}{k T_{0}} \quad \Theta = \sum_{l} \exp\left(-\varepsilon_{l}\right)$$

Поправка φ_l к равновесной функции распределения определяется из соответствующего (1) линеаризованного уравнения, которое с учетом сферической симметрии имеет вид:

$$C_r \frac{\partial \varphi_l}{\partial r} + \frac{C^2 - C_r^2}{r} \frac{\partial \varphi_l}{\partial C_r} = I_{St} [\varphi_l]$$
(2)

В качестве граничных условий примем закон диффузного отражения молекул газа от поверхности каждой из сфер, что эквивалентно

$$\varphi\big|_{r=R_k} = \Phi_r^k = \frac{n_r^k - n_0}{n_0} + \left(C^2 - \frac{3}{2} + \varepsilon_l - G\right) \frac{\Delta T}{T_0} \Delta T = T_1 - T_2 k = 1, 2.$$

Значения перепада концентрации определяются требованием отсутствия массового движения газа. Конкретные расчеты проведем для модельного интеграла столкновений в форме Хансона-Морзе [3]:

$$I_{st}[\varphi] = \sum_{m=1}^{0} \psi_m A_m - \varphi_l$$

$$3_{\text{ДЕСЬ}}: \psi_1 = \rho_1, \quad \psi_2 = \frac{2}{3} \rho_2 \left(1 - \frac{2}{3} \frac{G}{Z} \right) + \frac{2}{3Z} \rho_3, \quad \psi_3 = \frac{2}{3Z} \rho_2 + \frac{1}{G} \left(1 - \frac{1}{Z} \right) \rho_3$$

$$\psi_4 = \frac{4}{9} \rho_4 \left(1 - \frac{G}{Z} \right) + \frac{2}{3Z} \rho_5, \quad \psi_5 = \rho_4 \frac{2}{3Z} + (1 - F) \frac{2}{G} \rho_5, \quad \psi_6 = 2\rho_6,$$

$$A_m = \frac{1}{\pi^{3/2} \Theta} \sum_{l} \int \varphi_l \rho_m \exp\left(-C^2 - \varepsilon_l \right) d^3 C$$

$$\rho_1 = 1, \quad \rho_2 = C^2 - \frac{3}{2}, \quad \rho_3 = \varepsilon_l - G, \quad \rho_4 = C_r \left(C^2 - \frac{5}{2} \right), \quad \rho_5 = C_r (\varepsilon_l - G), \quad \rho_6 = C_r,$$

$$F = \frac{\frac{10}{9} \frac{G}{Z} + \frac{2}{3} \left(\frac{4}{9} + \frac{5G}{9Z}\right) G + \frac{5G}{18Z^2} \left(\frac{3}{2} + G\right) F_1}{\left(\frac{4}{9} + \frac{5G}{9Z}\right) \left(\frac{3}{2} + G\right) F_1 - \frac{5}{3}} \qquad G = \frac{c_v^{int}}{k} = \frac{1}{\Theta} \sum_{l} \varepsilon_l \exp(-\varepsilon_l)$$

 c_{v}^{int} - теплоемкость внутренних степеней свободы, приходящихся на одну молекулу газа, Z - параметр, определяющий отношение времени релаксации внутренней энергии молекул к среднему времени между их столкновениями, F_{1} - фактор Эйкена. За единицу длины примем величину

$$l = \frac{\eta}{n_0} \sqrt{\frac{2}{mkT_0}}$$

 η - коэффициент вязкости газа.

Учитывая разрывный характер функции распределения на поверхности каждой из сфер и тот факт, что с любой точкой в объеме газа связаны три инвариантных конуса в пространстве скоростей, границы которых молекулы пересекают только за счет столкновений между собой, решение уравнения (2) по аналогии с [1] представим в виде

$$\varphi_{l} = \sum_{i=1}^{4} (a_{1}^{i} + a_{2}^{i}C^{2} + a_{3}^{i}\varepsilon_{l} + a_{4}^{i}C_{r} + a_{5}^{i}C_{r}C^{2} + a_{6}^{i}C_{r}\varepsilon_{l})H_{i}$$

$$_{\Gamma Д E} H_{1} = H(C_{r} - \beta C), \quad H_{2} = H(C_{r}) - H_{1}, \quad H_{3} = H(-C_{r}) - H_{4},$$

$$H_{4} = H(-C_{r} - \beta C), \quad \beta = \sqrt{1 - \frac{R_{1}^{2}}{r^{2}}},$$

$$H(x) = \frac{|x| + x}{2} - \text{стандартная функция Хевисайда.}$$

Коэффициенты a_k^i , зависящие только от расстояния до центра сфер, согласно методу полупространственных моментов, определяются из системы уравнений, для составления которой уравнение (2) с функцией (4) надо последовательно умножить на $H_i \exp(-C^2 - \varepsilon_l)$, $C^2 H_i \exp(-C^2 - \varepsilon_l)$, $\varepsilon_l H_i \exp(-C^2 - \varepsilon_l)$, $C_r H_i \exp(-C^2 - \varepsilon_l)$, $C_r E_l H_i \exp(-C^2 - \varepsilon_l)$, $C_r E_l H_i \exp(-C^2 - \varepsilon_l)$ и проинтегрировать по всему пространству скоростей.

Критерием точности данного подхода является возможность вычисления коэффициента скачка температуры. При условии полной аккомодации энергии на поверхности каждой из сфер и в случае $R_1 >> 1$, $R_2 - R_1 >> 1$ поток тепла может быть вычислен по формуле

$$Q = \frac{3}{8} \frac{(3+2G)F_1}{(1+KnC_t)\cdot R_1 \left(1-\frac{R_1}{R_2}\right)}$$
, где $Kn = Kn_1 + Kn_2$, $Kn_i = \frac{\lambda}{R_i}$, $\lambda = \frac{l\sqrt{\pi}}{2}$. Значения потока тепла при фиксированных R_1 и R_2 , полученные лл

Значения потока тепла при фиксированных R_1 и R_2 , полученные для различных газов при условии чисто диффузного отражения молекул от поверхности каждой из сфер, представлены в таблицах. (Для расчетов

величины столкновительных параметров взяты из [4].) При этом в случае $\frac{\frac{r_1}{R_2}}{R_2} \le 0.01$ значения потока тепла перестают зависеть от соотношения между радиусами сфер и практически совпадают с результатами, полу-

ченными в пределе $\frac{R_1}{R_2} = 0$, что эквивалентно уединенной сфере.

Автор выражает благодарность научному руководителю профессору, доктору физико-математических наук Савкову С. А. за обсуждение результатов и ценные рекомендации.

Табл.	1.	$F_I =$	1.96,	Z =	5.08,	G =	1, газ	- азот	N_2 .
-------	----	---------	-------	-----	-------	-----	--------	--------	---------

R_1	R_1/R_2								
	0	0,01	0,1	0,25	0,5	0,75	0,9	0,99	
0,01	0.846268	0.846462	0.846231	0.846063	0.846199	0.845944	0.846083	0.846249	
0,1	0.846190	0.846261	0.845398	0.844098	0.843113	0.843138	0.844285	0.845944	
1	0.789268	0.790755	0.802039	0.807914	0.806812	0.813075	0.825620	0.842885	
5	0.462641	0.465019	0.491455	0.535746	0.606527	0.679159	0.745301	0.828567	
10	0.288104	0.290140	0.311684	0.352278	0.437996	0.556732	0.666436	0.811456	
100	0.035962	0.036514	0.039685	0.047274	0.069060	0.127492	0.252704	0.626680	

Табл. 2. $F_1 = 1.629$, Z = 7, G = 1.412, газ - углекислый газ CO_2 .

R_1	$R_{_{\mathrm{I}}}/R_{_{\mathrm{2}}}$							
	0	0,01	0,1	0,25	0,5	0,75	0,9	0,99
0,01	0.957805	0.962205	0.961975	0.961870	0.961851	0.962022	0.962226	0.962462
0,1	0.922043	0.957601	0.956954	0.956205	0.956350	0.957646	0.959691	0.962056
1	0.858786	0.860870	0.875318	0.886466	0.895110	0.913006	0.934002	0.962056
5	0.470427	0.473337	0.501977	0.551274	0.635917	0.734835	0.828080	0.939716
10	0.286891	0.288959	0.311170	0.354006	0.446942	0.586711	0.728035	0.917860
100	0.034932	0.035132	0.038554	0.045967	0.067362	0.125594	0.254712	0.685981

Табл. 3. $F_1 = 1.9843$, Z = 25, G = 1.1799, газ - воздух

R_1	R_1/R_2									
	0	0,01	0,1	0,25	0,5	0,75	0,9	0,99		
0,01	0.897404	0.897031	0.896910	0.896910	0.896725	0.896721	0.896824	0.896996		
0,1	0.897616	0.897525	0.896660	0.895064	0.893864	0.893885	0.894939	0.896661		
1	0.840351	0.842007	0.853694	0.859518	0.857365	0.862922	0.875582	0.893313		
5	0.496762	0.499567	0.527584	0.574271	0.648049	0.723123	0.791544	0.878493		
10	0.310739	0.312927	0.335965	0.379548	0.469877	0.594348	0.708766	0.860580		
100	0.038981	0.039233	0.043032	0.051249	0.074809	0.137773	0.271650	0.666282		

Список использованной литературы

- **1. Алешин П. С., Савков С. А.** О решении кинетического уравнения в задаче вычисления потока тепла между концентрическими сферами // ЖТФ. 2005. Т. 75. Вып. 5. С. 60-64.
- **2.** Савков С. А., Тюлькина Е. Ю. О решении кинетического уравнения Больцмана при вычислении потока тепла в многоатомных газах // ЖТФ. 2008. Т. 76. Вып. 7. С. 16-20.
 - 3. Hanson F. B., Morse T. F. // Phys. Fluids. 1967. V. 10. №. 2. P. 345-353.
- **4.** Pazooki N., Loyalka S. K. Heat Transfer in a Rarefied Polyatomic Gas II. Sphere // Heat Mass Transfer. 1988. V. 31. №. 5. P. 977-985.
- 5. Wan Chang C. S., Uhlenbeck G. E., Boer J. // Studies in Statistical Mechanics. Amsterdam: North Holland Publishing Company, 1964.

МАТЕМАТИЧЕСКОЕ ОБОСНОВАНИЕ НЕКОТОРЫХ ЗАКОНОМЕРНОСТЕЙ ОБУЧЕНИЯ

Уразаева Л. Ю., Галимов И. А.

Уфимский государственный авиационный технический университет

Актуальность проблемы

Проблема качества образования связана с обоснованием и использованием эффективных подходов к организации процесса обучения, в частности правильного определения трудоемкости курсов, сложности представления материала и его связанности, последовательного использования изученного материала при изучении последующего материала. Все вместе взятое является необходимым условием правильной организации учебного процесса.

Постановка задачи

В работе ставится задача исследования влияния начального уровня подготовки, индивидуальной скорости обучения, сложности представления материала на конечный результат обучения.

Остальные возможные факторы, такие как, например, заинтересованность студента в изучении дисциплины, сложность самой дисциплины - не учитываются в первом приближении. Важнейшим среди перечисленных факторов является фактор связанности учебного материала и его влияния на конечный результат обучения, с точки зрения определения влияния связанности или близости предыдущей темы, с материалом следующей или ряда следующих учебных тем, для лучшего усвоения следующего материала.

Формулировка математической модели

На основе данного знакового графа можно предложить математическую модель следующего вида

$$y^{k} = f(v_{i}, y_{i}^{k-1}, a_{i}, b_{i}, \prod_{j} c_{j} v_{j})$$

При записи модели были использованы следующие обозначения:

 y^{k-1} - начальный (базовый) уровень подготовки студента по данной учебной дисциплине или по данному разделу учебной дисциплины, полученный в результате предыдущей итерации обучения; в долях от 1;

 v_i -объем дисциплины (в долях от единицы, примем, что 1- это есть возможный максимум);