Тюлькина Е. Ю.

О ВЫЧИСЛЕНИИ ПОТОКА ТЕПЛА МЕЖДУ КОАКСИАЛЬНЫМИ ЦИЛИНДРАМИ В ДВУХАТОМНОМ ГАЗЕ

Адрес статьи: www.gramota.net/materials/1/2008/12/63.html
Статья опубликована в авторской редакции и отражает точку зрения автора(ов) по данному вопросу.

Источник

Альманах современной науки и образования

Тамбов: Грамота, 2008. № 12 (19). С. 198-200. ISSN 1993-5552.

Адрес журнала: www.gramota.net/editions/1.html
Содержание данного номера журнала: www.gramota.net/materials/1/2008/12/

© Издательство "Грамота"

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: www.gramota.net Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: almanac@gramota.net

О ВЫЧИСЛЕНИИ ПОТОКА ТЕПЛА МЕЖДУ КОАКСИАЛЬНЫМИ ЦИЛИНДРАМИ В ДВУХАТОМНОМ ГАЗЕ

Тюлькина Е. Ю.

ГОУ ВПО «Орловский государственный технический университет»

Изучение процесса теплопереноса между коаксиальными цилиндрами имеет важное теоретическое и прикладное значение. Достаточно подробный обзор публикация по этому вопросу представлен в [Коленчиц 1977; Кошмаров 1977; Борисов 1988]. Однако при теоретическом описании указанного явления, как правило, применяют метод Лиза [Lees 1962], или вариационные методы [Cerciniani 1967; Bassanini 1968], не дающие реального описания состояния газа. Более строгий подход рассматривался в работах [Савков 2000; Алешин 2004]. Данная статья посвящена случаю двухатомного газа.

Рассмотрим слой двухатомного газа между двумя коаксиальными цилиндрами с радиусами $R_1 < R_2$, на поверхности которых поддерживается постоянная температура $T_s^1 > T_s^2$. Перепад $\Delta T_s = T_s^1 - T_s^2$ считается достаточно малым, для того, чтобы ограничиться линейным приближением. Состояние газа определяется кинетическим уравнением [Черчиньяни 1978]:

$$\mathbf{V}\nabla f = J_{st}[f] \tag{1}$$

3десь V – вектор собственной (тепловой) скорости молекул газа, f – функция распределения.

Введём цилиндрическую систему координат, ось ОZ которой направим вдоль оси симметрии цилиндров.

В качестве единицы длины примем величину
$$l=\frac{3\lambda}{\sqrt{\pi}}$$
 , где $\lambda=\frac{\kappa}{21n_0}\sqrt{\frac{8m\pi}{k^3T_0}}$ — определенная согласно [Черчи-

ньяни 1978], средняя длина свободного пробега молекул газа, κ — коэффициент его теплопроводности, T_0 и n_0 - некоторые, принятые за равновесные, температура и концентрация молекул газа.

В силу линейности поставленной задачи, представим функцию распределения в виде:

$$f = f_0(1+\phi)$$

где
$$f_0 = n_0 \left(\frac{m}{2\pi k T_0}\right)^{3/2} \frac{J}{k T_0} \exp\left(-C^2 - \gamma^2\right)$$
 есть равновесная (максвелловская) функция распределения;

$${f C} = {f V} \sqrt{\frac{m}{2kT_0}}$$
 и $\gamma = \omega \sqrt{\frac{J}{2kT_0}}$ – безразмерные значения скорости поступательного и вращательного движения

молекул, ω — собственная (тепловая) скорость вращательного движения молекул газа, J — момент инерции молекул.

В силу аксиальной симметрии из (1) имеем

$$C_{r} \frac{\partial \phi}{\partial r} + \frac{C_{\phi}^{2}}{r} \frac{\partial \phi}{\partial C_{u}} = I_{st}[\phi], \tag{2}$$

где I_{st} — соответствующий J_{st} линеаризованный оператор столкновений.

Граничные условия в рассматриваемом случае имеют вид:

$$\phi\big|_{r=R_k} = \frac{n_r^k - n_0}{n_0} + \left(C^2 - \frac{3}{2}\right) \frac{T_r^{\nu,k} - T_0}{T_0} + \left(\gamma^2 - 1\right) \frac{T_r^{\omega,k} - T_0}{T_0}, \ k = 1, 2.$$

Значения n_r^k , $T_r^{v,k}$ и $T_r^{\omega,k}$ определяются характером аккомодации энергии и требованием отсутствия массового движения газа.

Конкретные расчеты проведем для модельного интеграла столкновений релаксационного типа:

$$I_{st}[\phi] = \sum_{i=1}^{3} P_i M_i - \phi , \qquad (3)$$

злесь

$$M_i = \frac{2}{\pi^{3/2}} \int P_i \phi \exp(-C^2 - \gamma^2) \gamma d\gamma d^3 C$$
,

$$P_1 = 1$$
, $P_2 = \sqrt{\frac{2}{5}} \left(C^2 + \gamma^2 - \frac{5}{2} \right)$, $P_3 = \sqrt{2}C_r$.

Учитывая разрывный характер функции распределения на поверхности каждого из цилиндров, а также тот факт, что с любой точкой в объеме газа связаны три инвариантные области в пространстве скоростей,

границы которых молекулы пересекают только за счет столкновений между собой, решение уравнения (2) будем искать в виде

$$\phi = \sum_{i=1}^{4} (a_1^i + a_2^i C^2 + a_3^i \gamma^2 + a_4^i C_r + a_5^i C_r C^2 + a_6^i C_r \gamma^2) H_i$$
(4)

гле

$$H_1 = H(C_r - \beta C_p)$$
, $H_2 = H(C_r) - H_1$, $H_3 = H(-C_r) - H_4$,

$$H_4 = H(-C_r - \beta C_p), \ \beta = \sqrt{1 - R_1^2/r^2}, \ C_p = \sqrt{C^2 - C_2^2},$$

$$H(x) = \frac{|x| + x}{2x}$$
 – стандартная функция Хевисайда.

Коэффициенты a_k^i , зависящие только от r, определяются из системы моментных уравнений, для составления которой уравнение (2) с функцией (4) надо последовательно умножить на все входящие в (4) моменты, т.е. на

$$H_i \exp(-C^2 - \gamma^2)$$
, $C^2 H_i \exp(-C^2 - \gamma^2)$, $\gamma^2 H_i \exp(-C^2 - \gamma^2)$,
 $C_c H_i \exp(-C^2 - \gamma^2)$, $C_c C^2 H_i \exp(-C^2 - \gamma^2)$, $C_c \gamma^2 H_i \exp(-C^2 - \gamma^2)$

и проинтегрировать по всему пространству скоростей.

Искомый поток тепла определяется соотношением $q = n_0 \sqrt{\frac{2k^3T_0^3}{m}}Q$,

где ζ – безразмерный поток тепла.

Результаты решения системы моментных уравнений могут быть представлены в виде

$$Q = \left(\frac{4}{7}R_1 \ln\left(\frac{R_2}{R_1}\right) + \alpha\right)^{-1} \frac{R_1}{r} \frac{\Delta T}{T_0}. \tag{5}$$

Параметр α описывает отличие потока тепла от газодинамического решения.

Определенный интерес представляет рассмотрение цилиндров достаточно большого радиуса, когда ρ и $R_2-R_1>>1$. В рассматриваемом пределе система моментных уравнений допускает аналитическое решение и поток тепла можно представить в виде

$$Q = \frac{7}{4} \frac{1}{R_1 \ln \frac{R_2}{R_1} + C_t \lambda \left(1 + \frac{R_1}{R_2}\right)} \frac{R_1}{r} \frac{\Delta T}{T_0} , \tag{6}$$

где C_t – коэффициента скачка температуры, определение которого может служить критерием точности предложенного подхода. В частности, с учетом первых шести моментов C_t = 2.06601.

Значения обезразмеренного потока тепла при фиксированных $\Delta P_{_{M.C.}}$ и $R_{_2}$, полученные при условии чисто диффузного отражения молекул газа от поверхности каждого из цилиндров, представлены в Таблице.

Заметим, что при $R_1 >> 1$ задача сводится к плоской геометрии, и совпадает с результатами, полученными в работе [Савков 2006]. При этом погрешность результатов, полученных в рамках изложенного подхода к решению кинетического уравнения уже в первом приближении, не превышает 0.4% во всем диапазоне числа Кнудсена.

Автор выражает благодарность научному руководителю профессору ГОУ ВПО «ОГУ», доктору физикоматематических наук Савкову С. А.

Список использованной литературы

- 1. Алешин П. С., Савков С. А. О решении кинетического уравнения в задаче вычисления потока тепла между коаксиальными цилиндрами // ЖВМ и МФ. 2004. Т. 44. № 8. С. 1495–1504.
- **2. Борисов С. Ф., Балахонов Н. Ф., Губанов В. А.** Взаимодействие газов с поверхностью твердых тел. М.: Наука, 1988.
 - 3. Коленчиц О. А. Тепловая аккомодация систем газ твердое тело. Минск: Наука и техника, 1977.
 - 4. Кошмаров Ю. А., Рыжов Ю. А. Прикладная динамика разреженного газа. М.: Машиностроение, 1977.
- **5.** Савков С. А., Тюлькина Е. Ю. Об учете аккомодации энергии и вычислении потока тепла в плоском слое двухатомного газа // ЖТФ. 2006. Т. 76. Вып. 2. С. 25–29.

- **6.** Савков С. А., Юшканов А. А. К вопросу о вычислении потока тепла между коаксиальными цилиндрами при произвольных числах Кнудсена // ЖТФ. 2000. Т. 70. Вып. 11. С. 9–14.
 - 7. Черчиньяни К. Теория и приложения уравнения Больцмана. М.: Мир, 1978.
- **8.** Bassanini P., Cerciniani C., Pagani C. D. Influence of the Accommodation Coefficient on the Heat Transfer in a Rarefied Gas // J. Heat Mass Transfer. 1968. V. 11. № 9. Pp. 1359–1369.
- **9.** Cerciniani C., Pagani C. D. Variational Approach to Rarefied Flows in Cylindrical and Spherical Geometry // Rarefied Gas Dynamics. 1967. V. 2. Pp. 555–573.
- **10.** Lees L., Liu Chung-Yen. Kinetic Theory Description of Conductive Heat Transfer from a Fine Wire // Phys. Fluids. 1962. V. 5. № 5. Pp. 1137–1148.

R_1	R_1/R_2						
	0,01	0,1	0,2	0,4	0,6	0,8	0,9
0,01	0.833797	0.839239	0.841113	0.843069	0.844283	0.845298	0.845771
0,1	0.731749	0.783134	0.798103	0.815340	0.826891	0.836446	0.841079
0,5	0.439460	0.595112	0.649232	0.710614	0.756685	0.798854	0.820708
1	0.284737	0.442654	0.517831	0.610275	0.683138	0.755887	0.796389
2	0.164653	0.285342	0.359449	0.471857	0.571591	0.682478	0.751721
4	0.088594	0.164288	0.218719	0.319989	0.430771	0.573877	0.677124
6	0.060487	0.114945	0.156425	0.240695	0.345266	0.497384	0.618016
8	0.045899	0.088325	0.121615	0.192583	0.287852	0.439999	0.569957
10	0.036975	0.071696	0.099439	0.160406	0.246696	0.395001	0.529897
25	0.015033	0.029698	0.041948	0.071047	0.118752	0.224858	0.354011
50	0.007555	0.015022	0.021354	0.036817	0.063634	0.131009	0.230641
100	0.003785	0.007554	0.010774	0.018747	0.032994	0.071391	0.136128

ИЗУЧАЕМ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ С ИНТЕРЕСОМ

Фалалеева О. Н.

Уссурийский государственный педагогический институт

Во всех странах мира значительное внимание уделяется проблеме оценивания качества обучения и совершенствованию средств оценивания качества знаний.

Одно из таких средств, применяемых в настоящее время, рассмотрено в данной работе – это портфолио, использованное на уроках физики в общеобразовательной школе при изучении темы «Электромагнитные волны» в 11 классе.

Оценивание достижений с помощью портфолио является одним из ориентиров качественного обновления оценки. Портфолио позволяет педагогам обсуждать не абстрактную успеваемость, а рассматривать конкретные результаты работы учеников.

Благодаря портфолио школьники могут осмысленно выбрать будущую профессию, развивают речевые навыки, самостоятельность, логику и более активно принимать участие в конкурсах, соревнованиях и олимпиалах.

Физика обладает богатыми возможностями для оформления тематического портфолио. Процесс сбора, несомненно, расширит кругозор ученика или учеников (если работа осуществляется в микрогруппах), упорядочит знания, позволит оперировать новыми понятиями и послужит стимулом к дальнейшему активному изучению интересной науки. Естественно, что такое возможно при наличии устойчивой внутренней учебной мотивации школьников, общей заинтересованности учителя и учеников в результате работы.

Мы решили предложить учащимся собрать тематическое портфолио «Электромагнитное излучение и его влияние на здоровье человека». Электродинамика достаточно сложный раздел школьного курса физики и особого интереса у школьников не вызывает. Но не каждый из них знает о том, что, например, сотовый телефон является источником и приемником электромагнитных волн и влияет на здоровье человека при частом использовании или неправильном ношении; расположение бытовой техники в доме может быть опасным и т.л.

Возможные рубрики будущего портфолио вызвали интерес у ребят. Понятно, что это был интерес из категории сиюминутных, скоропроходящих. Но наша задача заключалась в том, чтобы содержанием материалов, которые будут собирать одиннадцатиклассники, направить их на осознанное решение проблем теоретического познания явлений и объектов окружающего мира, в частности — более расширенное изучение электромагнитного излучения.

Учащиеся под нашим руководством разработали план портфолио, который не шел вразрез с их повседневной учебной загруженностью.

Пункты плана условно были разбиты на три части:

- 1) теоретическую;
- 2) практическую;
- 3) исследовательскую.